

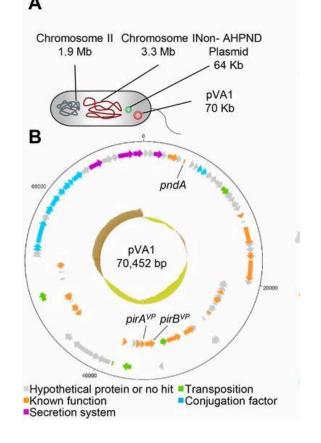
Respuesta integral al estudio y control de vibriosis en cultivos de camarón

Bonny Bayot, Jenny Rodríguez, María Sotomayor, Leda Restrepo, Martha Maldonado, Cecilia Tomalá, Cristóbal Domínguez, Ramiro Solórzano

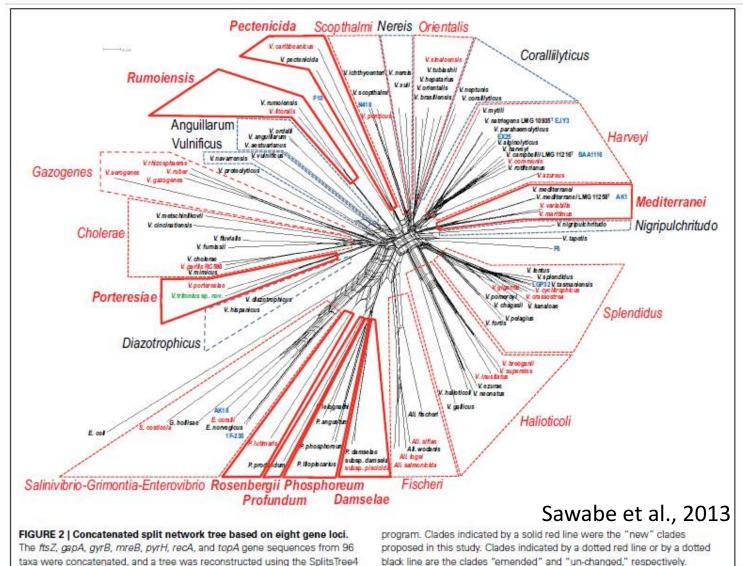
Vibriosis

Table 1.

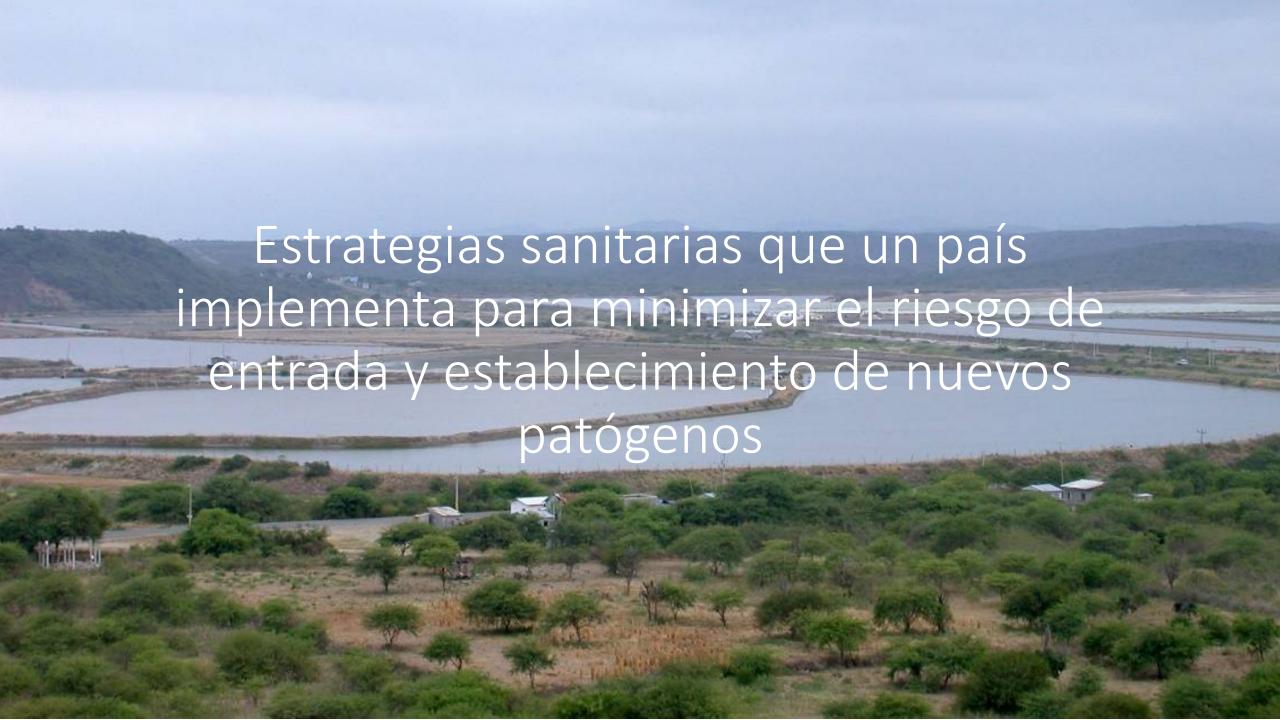
Examples of socio-economic and other impacts of Vibrio related diseases in aquaculture system.


Country	Vibrio spp. caused disease	Losses and other impacts	Reference Wei (2002) Saad and Atallah (2014)	
China	V. fluvialis	>US\$ 120M annual losses between 1990-1992		
Egypt	V. anguillarum V. alginolyticus V. ordalii V. harveyi	Red spot on the ventral and lateral area Swollen and dark skin lesions, necrosis, hemorrhagic areas, exophthalmia and ulcers on the skin surface 50% mortality in Seabass and Seabream		
Indonesia	Luminescent Vibrio	>US\$ 100 M in 1991 at shrimp hatcheries	APEC (2000)	
Tunisia	V. parahaemolyticus	Darkened body color, white nodular skin lesion, and sudden death with haemorrhages in the skeletal muscle of European Seabass	Khouadja et al. (2013)	
Mexico	V. parahaemolyticus	Acute Hepatopancreatic Necrosis Disease (AHPND) in <i>L. vannamei</i> include empty gut, anorexia, lethargy, expanded chromatophores and pale HP with discoloration	Soto-rodriquez et al. (2015)	
Thailand	V. harveyi	Mass mortalities in P. monodon	Groumellec et al. (1995)	
Ecuador	V. harveyi	Mass mortalities in P. monodon	Groumellec et al. (1995)	
Japan	V. carchariae	Mass mortalities in Japanese abalone Haliotis diversicolor	Nishimori et al. (1998)	
India	V. harveyi	Tail rot, erythemia, and as white patches on the body of seahorses, Hippocampus kuda	Raj et al. (2010)	
India	V. parahaemolyticus V. alginolyticus V. anguillarum V. vulnificus	Poor growth, lethargic movements, red discoloration, and mortality in Penaeus monodon	Thakur et al. (2003)	
Italy	V. alginolyticus V. anguillarum V. harveyi V. ordalii V. salmonicida V. vulnificus	Mass mortalities in bivalves farm located in Mar Piccolo in Taranto	Cavallo et al. (2012)	
West coast of North America	V. tubiashii	Reduce the bivalve shellfish larval and seed production. One hatchery in their study estimated a 59% loss in 2007 production.	Eiston et al. (2008)	

- Vibrios spp
- Todas especies camarón penaeidos
- Larvas, postlarvas, juveniles
- Patógenos secundarios y primarios

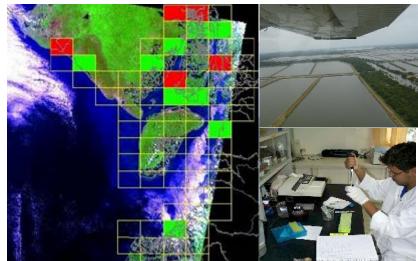

Necrosis aguda hepatopancreática AHPND/EMS-Enfermedad bacteriana más emergente

Lee et al., 2015



Vibrios agrupados en clados

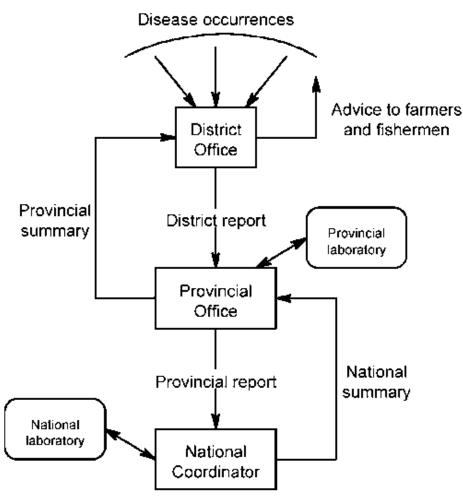
Respuesta a problemas emergentes de vibriosis (integral)


- Estrategias para minimizar el riesgo de introducción a un país
- Diagnóstico de la situación
- Estudiar la amenaza
- Estrategias de prevención y control

Disminuir riesgo de introducción patógenos a nivel de país

Análisis de riesgo a la importación

Vigilancia epidemiológica/Sistemas de alerta


Cuarentena (aislamiento)

Planes de Acción

Vigilancia Epidemiológica y Planes de Acción

Redes de Alerta Sanitaria

- Autoridad sanitaria competente
- Agencias de salud
 - Agencias centrales
 - Agencias locales
- Veterinarios de campo
- Laboratorios de diagnóstico
- Órganos de decisión
- Usuarios finales

Productor concientizado acerca de amenazas (participar de la vigilancia)

Herramientas de diagnóstico

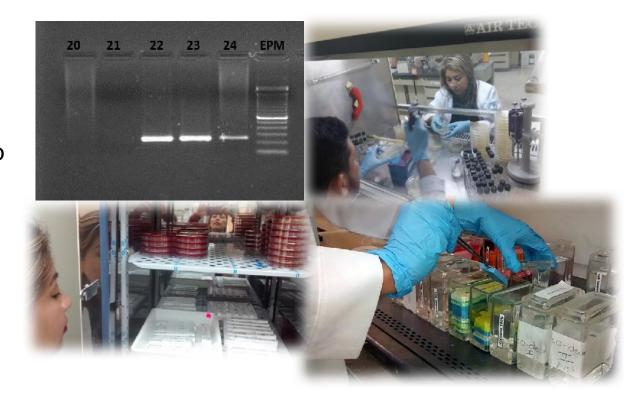
 Implementación de metodología sensible y específica para patógenos emergentes

 Plataforma de herramientas integral: microbiología, histopatología, biología molecular

• Implementación se realice apenas aparezca una amenaza fuera de las fronteras

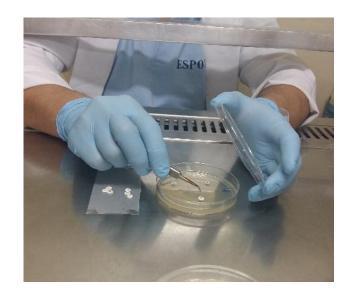
Personal muy calificado

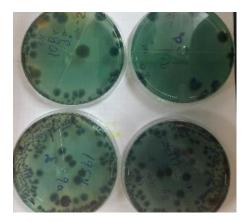
• Inter-calibración entre laboratorios nacionales e internacionales


Monitoreo – Colección de datos

- Recogida de datos históricos, clínicos y complementarios (situación epidemiológica)
 - Investigación de brotes unidades de producción (¿Qué, Cuando, Cuanto, Donde, Porque?)
 - Información clínica (edad, tamaño, signos externos)
 - Manejo (densidades, alimentación, supervivencias, crecimiento, días de cultivo, productos usados, protocolo de manejo)
 - Ambiente (parámetros ambientales, vectores, clima)
 - Bioseguridad
 - Localidad, extensión, afectación contigua/separada
 - Documentación fotográfica

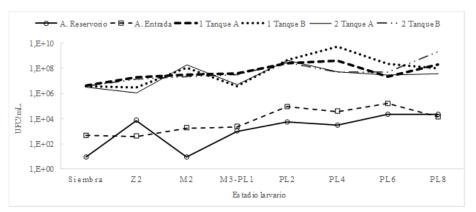
Monitoreo – Colección de muestras


- Estudios de detección, prevalencia
- Identificación patógeno/enfermedad
 - Plataforma integral de métodos de diagnóstico (microbiología, histopatología, biología molecular)



Caracterización microbiológica

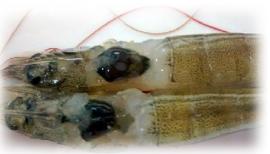
- Cargas bacterianas (camarón/agua/suelo/insumos/tanques)
- Identificación bacteriana (técnicas bioquímica)
- Aislamiento de cepas

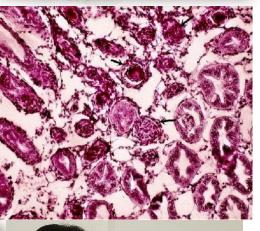


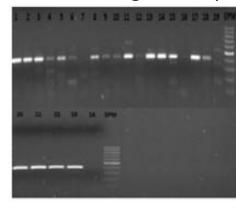
Carga bacteriana

Carga bacteriana en el sistema

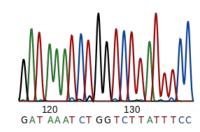
Caracterización patológica


Caracterización in situ de la patología


- Observar manifestaciones clínicas y de enfermedad
- Análisis en fresco (implementado por productores)
- Determinar características y severidad de lesiones histológicas

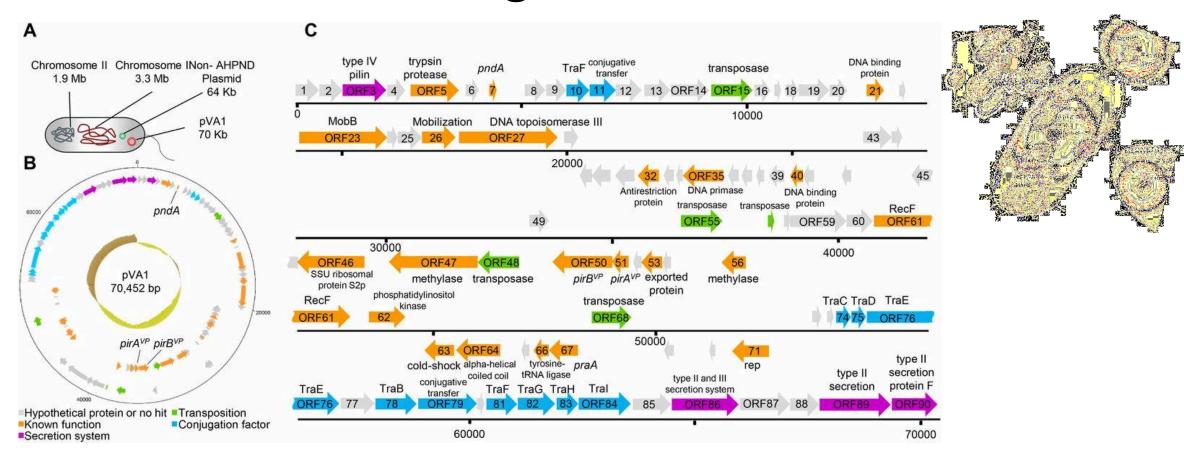

Caracterización molecular

- Identificación del patógeno o patogenicidad con primer específicos
- Secuenciación (16S rADN, MLSA) para identificación molecular de la especie
- Mejoramiento del diagnóstico
- Origen, propagación y evolución del patógeno
- Cepas circulantes y relación con letalidad



Pruebas de desafío

Amplificación de genes específicos


Secuenciación

Estudios genómicos – Genoma completo (NGS)

- Genoma completo y comparación de genomas de distintos aislados geográficos
 - Diagnóstico
 - Identificación de la especie
 - Origen, propagación y evolución
 - Estudio in silico de comportamiento de cepas a determinados medios
 - Identificación de factores de virulencia (invasión, cause enfermedad y evada defensa huésped)

Estudios genómicos – Transferencia horizontal de genes

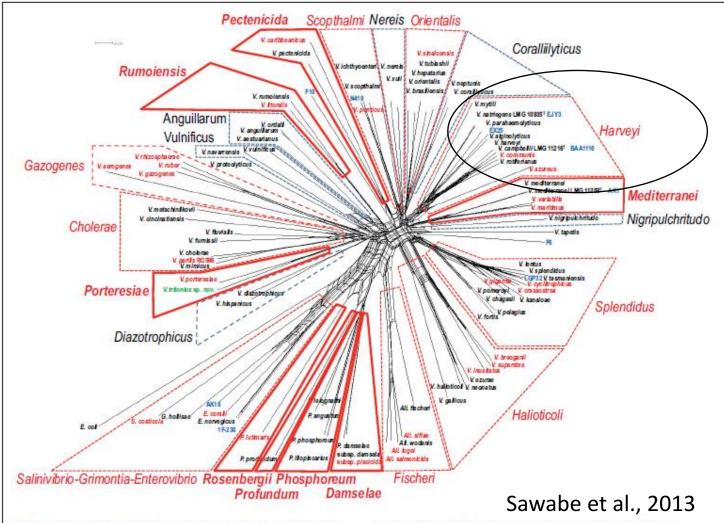
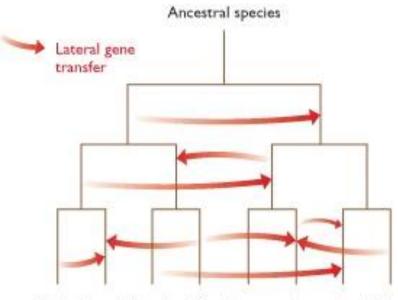
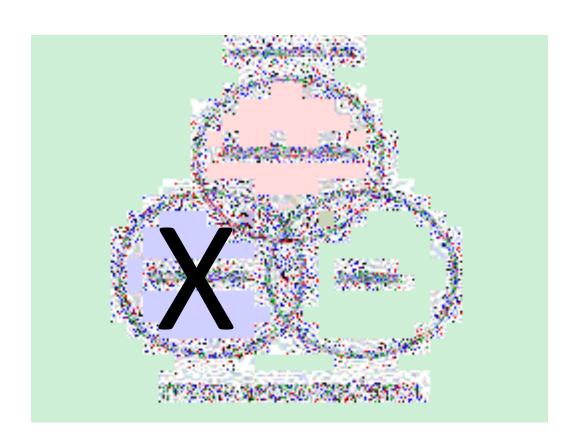



FIGURE 2 | Concatenated split network tree based on eight gene loci.

The ftsZ, gapA, gyrB, mreB, pyrH, recA, and topA gene sequences from 96 taxa were concatenated, and a tree was reconstructed using the SplitsTree4

program. Clades indicated by a solid red line were the "new" clades proposed in this study. Clades indicated by a dotted red line or by a dotted black line are the clades "emended" and "un-changed," respectively.

(B) Lateral gene transfer occurs between species



Evolutionary histories of modern species are less distinct

Bioseguridad

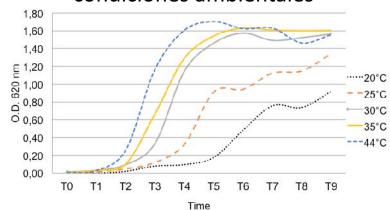
Minimizar riesgo de entrada, dispersión y salida de patógenos

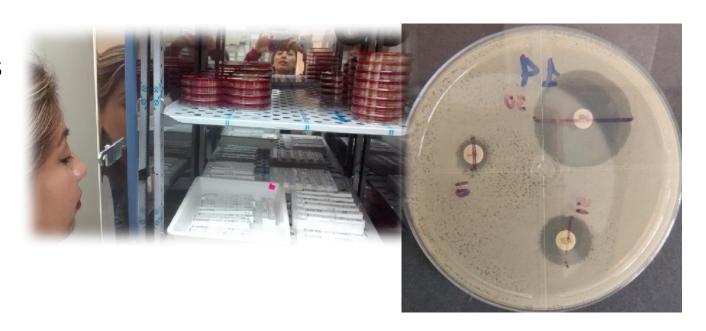
Adopción de buenas prácticas de manejo

- Guía para productores
- Todos las etapas de práctica de la camaronera en laboratorios y nursery
 - Localización
 - Manejo de animales
 - Uso y almacenamiento de productos,
 - Manejo de efluentes
 - Sanidad
 - Cosecha, colecta y manejo post cosecha previa a la transportación

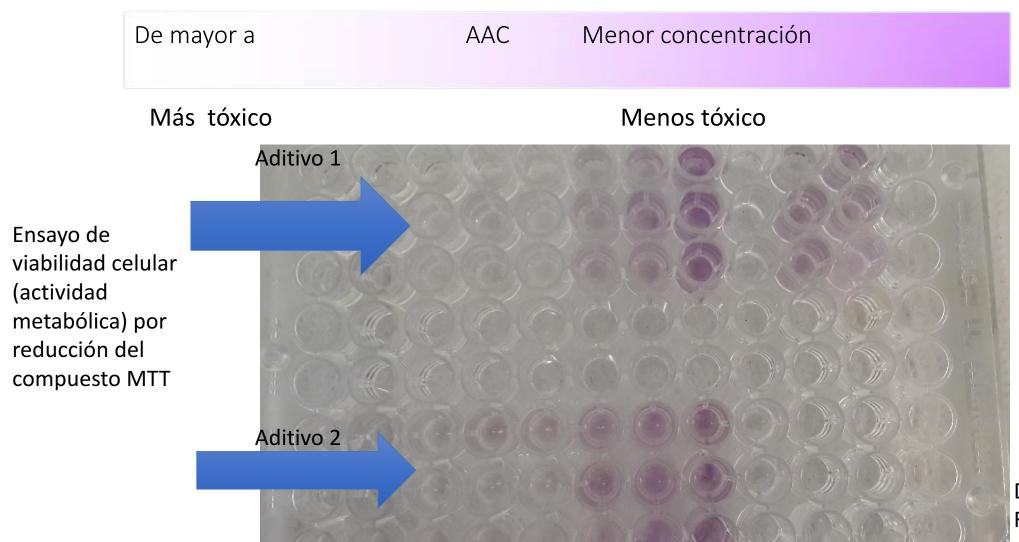
THAI AGRICULTURAL STANDARD

TAS 7419-2009


GOOD AQUACULTURE PRACTICES FOR MARINE SHRIMP FARM: DISEASE FREE MARINE SHRIMP PRODUCTION

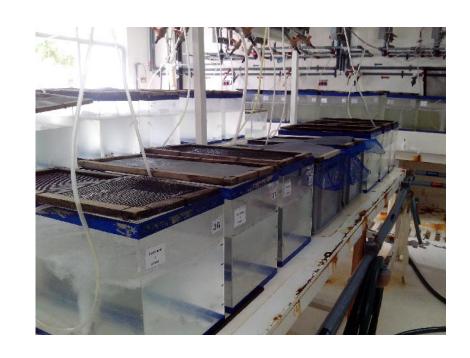

National Bureau of Agricultural Commodity and Food Standards
Ministry of Agriculture and Cooperatives
ICS 65.020.99 ISBN 978-974-403-664-3

Pruebas in vitro


- Comportamiento de cepas a distintas condiciones ambientales
- Pruebas de sensibilidad de patógenos a agentes terapéuticos y no terapéuticos (antibiogramas y MIC)

Comportamiento a distintas condiciones ambientales

Toxicidad de productos



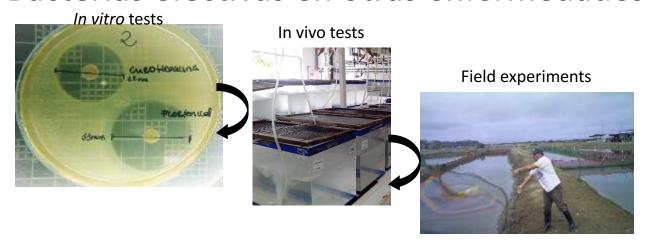
Domínguez y Rodríguez, 2017 (en elaboración)

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Pruebas de desafío (Challenge test) — Pruebas *in vivo*

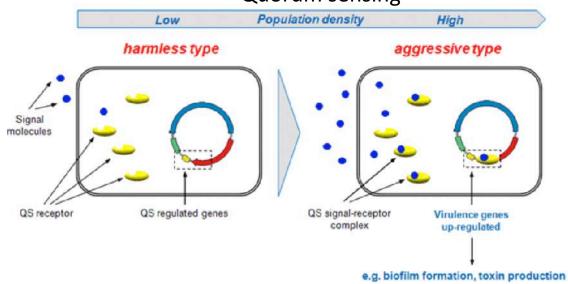
- Comprobación de postulados de Koch con cepas aisladas
- Estandarización de pruebas de desafío (reproducibles en tiempo)
- Validación de agentes terapéuticos con cepas aisladas y distintas por criterios microbiológicos, genómicos y patológicos
- Relación entre cepas genéticamente distintas y letalidad
- Pruebas de resistencia de animales a la enfermedad

Antibióticos Método de control tradicional



- Antibióticos usados en forma rutinaria y como profilaxis tiene importantes desventajas
 - Resistencia bacteriana a antibióticos
 - Transmisión horizontal de genes de resistencia a antibióticos
 - Bacterias acuícolas
 - Patógenos humanos
 - Asociado a aparición de cepas virulentas
 - Muchos casos es inefectivo en producción

The different classes of antibiotics used in aquaculture, their importance for human medicine and examples of (multifresistant pathogeni bacteria isolated from aquaculture settings.							
Drug class	Importance for human medecine*	Example	Resistant bacteria	Mutiple ^b resistance?	Isolated from	Reference	
Aminoglycosides	Critically important	Streptomycin	Edwardsiella ictulari	Yes	Diseased striped catfish (Pangasianod on hypophthalmus), Vietnam	[6]	
Amphenicols	Important	Florfenicol	Enterobacter spp. and Pseudomonas spp.	Yes	Freshwater salmon farms, Chile	[7]	
Beta-lactams	Critically important	Amoxicilin	Vibrio spp., Aeromonas spp. and Edwardsiella tarda	Yes	Different aquaculture settings, Australia	[8]	
Beta-lactams	Critically important	Ampicillin	Vibrio harveyl	Yes	Shrimp farms and coastal waters, Indonesia	[9]	
Fluoroquindones	Critically important	Enrofloxacin	Tenacibaculum maiftimum	Yes	Diseased turbot (Scophthalmus maximus) and sole (Solea senegalensis), Spain and Portugal	[10]	
Macrolides	Critically important	Erythromycin	Salmonella spp.	Yes	Marketed fish, China	[11]	
Nitrofurans	Critically important	Furazolidone	Vibrio anguillarum	Yes	Diseased sea bass and sea bream, Greece	[12]	
Nitrolurans	Important	Nitrofurantoin	Vibrio harveyl	Yes	Diseased penaeid shrimp, Taiwan	[13]	
Quinolones	Critically important	Oxolinic acid	Aeromonas spp., Pseudomonas spp. and Vibrio spp.	Yes	Pond water, pond sediment and tiger shrimp (Penaeus monodori), Philippines	[14]	
Sulphonamides	Important	Sulphadazine	Aeromonas spp.	Yes	Diseased katia (Catla catla), mitgel (Cirthinus mrigala) and punti (Puntius spp.), India	[15]	
Tetracyclines	Highly important	Tetracycline	Aeromonas hydrophila	Yes	Water from mullet and tilapia farms, Egypt	[16]	
Tetracyclines	Highly important	Oxytetracycline	Aeromonas salmonicida	Yes	Atlantic satmon (Salmo salar) cuture facilities, Canada	[17]	


Búsqueda de nuevos probióticos

- Cribado de cepas bacterianas marinas, fuentes de compuestos bioactivos antagonistas a patógenos acuáticos
- Bacterias benéficas aislada de sistemas de producción (Bacillus, tecnología a punto)
- Bacterias efectivas en otras enfermedades

Inhibición de expresión de genes de virulencia a través de inhibición quorum sensing

Strategies for quorum sensing inhibition 3 strategies can be applied Targeting AIII. signal Targeting the signal Targeting signal Generation dissemination Receptor Signal precursor lignal precursor signal precursor Signal Signal receptor Signal receptor Signal receptor

Quorum quenching

Natural compound(s)	Source	Q6 settivity	Ref.
Furanone/ 2(SH)-Furanone/	Macroalga (Delisas pulchra)	Mimics AHL signal by occupying the binding site on putative regulatory protein which results in the disruption of QS-mediated gene regulation. Inhibit biofilm formation in Aer. injuriphils. Repress LuxR protein dependent expression of P(luxI) gFp(ASV)	[109, 17] [110]
(5Z) 4-brome 5-(bromomethylene) 3-butyl-2(5 H)-furanone.	Macroalga (Delisez pulchra)	reporter fusion. Inhibit virulence factor in E , $coli XL-1$. Disrupts QS regulated bioluminescence in V , harveyi by interacting with Hfq protein. Inhibit swarming motility and biofilm formation	[111, 112]
PACE		in E. coli	
Ajoene (1-Allyldisulfanyl-3-(prop-2-ene-1-sulfinyl)-pro pene)	Garlic extract (Alliam solimum)	Blocks the QS-regulated productions of rhamnolipid resulting in phagocytosis of biofilm. Targets Gac/RSM part of QS and lowers the expression of regulatory RNAs in P. zeragizasa PAO1	[113, 114]
lberin [1-Isothiocyanato-3-(methylsulfinyl)propane)	Horseradish extract (Armonacia rusticana)	Inhibit expression of QS-regulated lasB-gfp and ndA-gfp genes responsible for virulence factor in P. zernginasa	[115]
Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)butane)	Beroccali	Reduce the expression of last-luxCDABE reporter in P. seruginase	[116]
Erucin (4-methylthiobutyl isothiocyanate)	Boroccoli	Reduce the expression of last-luxCDABE reporter in P. gerughose	[116]
Naringin (4'5-diOH-Flavone-7-rhgluc)	Citrus extract	Decrease the QS mediated biofilm formation and swimming motility in Y, enterocolities	[18]
Naringenin	Malagasy bank extract (Com-	Reduces production of pyocyanin and elastase in P. aeraginous	[117, 119]
(4',5,7-Trihydroxyflavanone)	bretum albiflorum)	PAO1. Also inhibit 3-oxo-C12-H5L and C4-H5L synthesis driven by last and rhill genes	
Taxifolin/ Distylin (dihydroquercetin)	Malagasy plant extract (Com- inctum albiforum)	Reduces production of pyocyanin and elastase in P. seruginose PAO1	[117]
Morin (2,3,4',5,7-Pentahy droxy flavone)	Grapefruit (Ariocarpus helero- phyllus)	Inhibit LasR and RhIR dependent protesse, elastase and hemolysin in F. seruginus PAOI	[119, 120]
Patulin/ Clavacin (4-Hydroxy-4H-turo[3,2-c[pyran-2(6H)-one)	Penicilitum sp.	Targets the RhIR and LasR proteins. Down-regulates Q5 genes for biofilm formation and virulence in P. aeraginosa	[121]
Penicillic acid (3-Methoxy-5-methyl-4-oxo-2,5-hexaclierosic acid)	Penicillium sp.	Down-regulates QS genes for biofilm formation in P. aeruginosa	[121]
Vanillin	Vanilla beans extract (Vanilla	Interfere with AHL receptors. Inhibit C4-HSL, C6-HSL, C8-HSL,	[122, 123,
4-Hydroxy 3-methoxybenzaldehyde)	planifolia Andrews)	3-oxo-C8-HSL. Inhibit biofilm formation in Aer. hydrophila	16]
Agrocinopine B [(35.4R,R)-3,4,5,6-tetrahydroxy-2-oxohexyl] [(2R,36,45)-3,4,5-trihydroxy-1-oxopentan-2-yl] hydrogen phosphate)	Crown gall cells	Control conjugation of pTiC58 by regulating exposion of the arc operon in A. trongficieus	[124]
L-canavanine (L-a-Amino-y-(guanidinouxy)-n-butyric acid)	Seed exudates (Medican satitus)	Inhibit the expression of QS-regulated phenotype exopolysaccha- ride II production in Si. meliloti	[125]
Gamma-aminobutyric acid (GABA) (4-Aminobutanoic acid)	Plants (Arobidopsis sp.)	Induce the expression of attKLM operon to stimulate inactivate 3-oxo-C8-HSL by A. famefaciers factoriase AttM	[126, 127]
Rosmarinic acid [R-O-(3,4-Dihydroxycinnamoyl)-3-(3,4-dihy- droxyphenyl) lactic acid)	Sweet basil (Ocimum basilicum)	Inhibit protease, elastase, hemolysin production, biofilm formation and virulence factor in P. arraginosa	[119, 108, 128]
Salycilic acid (2-Methyl-5-tert-butylsalicytic acid)	Plant phenolic secondary metabolite	Inhibit the expression of vir regulon in A. tumefaciens. Also stimu- lates AHL-lactonase expression which degrades AHLs.	[129]
Ch <mark>l</mark> orogenic acid (3-Calfeoy <mark>l</mark> quinic acid)	Plant extract (Moringa oleifera)	Inhibit QS-regulated violacein production in C. violaceum 12472	[130]
Allin (2-Amino-3-[prop-2-ene-1-sulfinyl]-propionic	Garlic extract (Alliam sutionan)	Inhibit QS-regulated gene expression by interacting with recepturs in P , saviginast and make biofilm sensitive to antibiotics.	[113, 131]
acid) Ursolic acid (3bets-Hydroxyurs-12-en-28-oic acid)	Plant extract (Sambucus	inhibit biofilm formation by suppressing cystenine synthesis in \mathcal{E}_{n} and	[132, 133]
Ellagic acid (Benzoaric acid)	Fruit extract of Terminalia chebula Retz.	Down-regulate the expression of virulence gene in P. seruguiosa PAO1. Reduces biefilm formation and swarming motility in B. ozwetz	[134, 135]
α-Hydroxybutyric acid (2-hydroxy-butanoic acid)	Arabidopsis exudates	Induce the expression of attKLM-lacZ fusion in A. tumefaciens	[136]
Bpigallocatechin gallate (Epigallocatechol)	Green tea (Camellia sinensis L.)	This compound has gallic acid moiety and specifically block AFIL-mediated biofilm formation in Sta aureus and B. capacia. Inhibit transfer of conjugative R plasmid in E. coli	[135, 137-139]
Pyrogallol 1,2,3-Trihydroxybenzene)	Plant extract (Punics granatum)	Inhibit Al-2 mediated bioluminescence in V. harveyi	[140, 141]
Cinnamon oil/ Cynnamaldheyde (trans-Cinnamaldehyde)	Clinianomum zeylanleum	Interfere with Al-2 based QS and decreases the DNA-binding ability of LuxR protein to reduce virulence in V app. Reduces LuxR-mediated transcription from the Pluxd promoter which in- fluences biofilm formation in P, articles	[142, 143]
Furocoumarin/ Psoralen [7H-Furo[3,2-g][1]benzopyran-7-one)	Grapefruit juice and extract (Psorales corylijolis L.)	The structural resemblance of furan moiety results in Q5-mediated inhibition of biofilm formation in E. cell, Inhibit Q5-mediated swarming motility in P. servajovas PAO1	[144, 145]
Urolithin (3.8-Dihydroxy-benzo[c]chromen-6-one)	Ellagitannin-rich extract from Pomegranate	Inhibit C6-HSL and 3-oxo-C6-HSL associated biofilm formation in Y. submwelfica. Inhibit Q5-mediated swarming motility in E. coh	[146, 147]

Lade et al. 2014

Biocontrol para mantener ambiente saludable

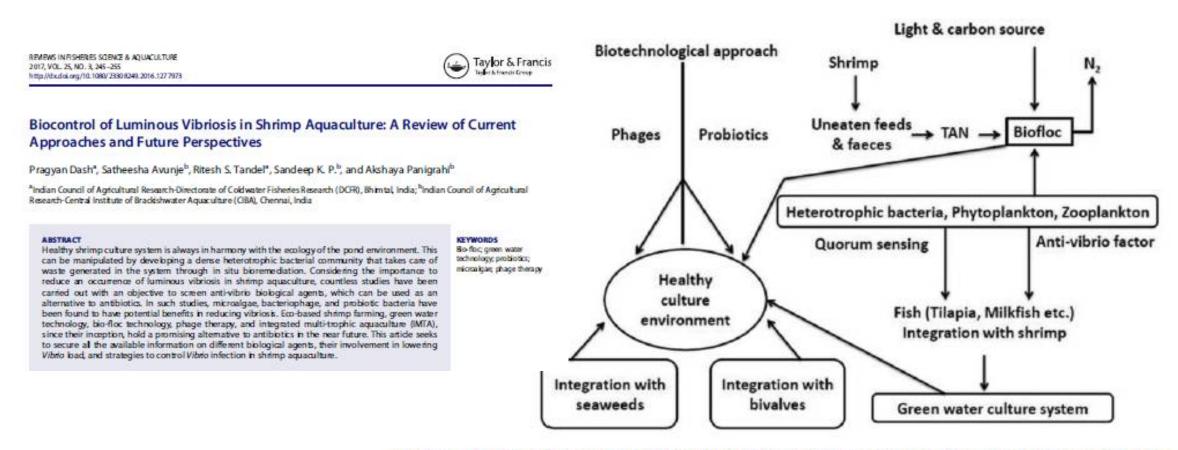


Figure 2. Schematic of integrated and biotechnological approaches to sustain healthy shrimp culture environment.

Integración de hidrobiontes y acuacultura multitrófica integrada en varios esquemas de combinación a sistemas de cultivo Crecimiento de microorganismos benéficos (bioflocs y probióticos)

Conclusiones

- Colaboración conjunta entre los involucrados para minimizar los impactos de enfermedades bacterianas
- Es necesario conocer al enemigo para elaborar métodos de control efectivos
- Bioseguridad y buenas prácticas de manejo pueden ser inmediatamente implementadas
- Estrategias son insuficientes si son aplicadas aisladamente
- Aplicación conjunta de varias estrategias podría obtener un mejor resultado de prevención y control