

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería Marítima y Ciencias del Mar

"Medición de distancias genéticas en poblaciones de camarón blanco *Litopenaeus vannamei* en la costa ecuatoriana"

> Tesis de Grado Previa a la obtención del título de:

MAGISTER EN CIENCIAS

Presentada por: Robin Hood Casalla Daza

Guayaquil – Ecuador 2003

TESIS ELABORADA CON EL SOPORTE DE:

FUNDACIÓN CENAIM-ESPOL

COOPERACIÓN TÉCNICA BELGA

UNIVERSIDAD DE GANTE BÉLGICA

UNIVERSIDAD CATÓLICA DE LOVAINA – BÉLGICA

FUNDACYT

Robin Hood Casalla Daza, hijo de Diofantes Casalla y Céntola Daza (Q.E.P.D) nació el 17 de octubre de 1975 en Barranquilla, Colombia. Recibió el título de Biólogo en la Universidad del Atlántico (Barranquilla-Colombia) en el año 2000. En 2001 fue aceptado por la Cooperación Técnica Belga (CTB) y la Fundación CENAIM-ESPOL para realizar una Maestría en Ciencias con especialidad en Acuicultura Marina en la Escuela Superior Politécnica del Litoral en Ecuador.

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL."

(Reglamento de Exámenes y Títulos profesionales de la ESPOL).

Robin Hood Casalla Daza

TRIBUNAL DE TESIS

Eduardo Cervantes, Ing. Presidente del Tribunal Filip Volckaert, Ph.D. Director de Tesis

Franklin Pérez, Ph.Dc. Codirector Tesis

Jorge Calderón, Ph.D. Miembro del Tribunal

Jose Luis Santos, Ph.D. Miembro del Tribunal

AGRADECIMIENTOS

A Dios por la oportunidad de darme la esencia de la vida. A mi papá y mi mamá (Q.E.P.D) y mis hermanos *Rocío, El Negro, Onasis, Yomaira, Nixon y Juancho* con ustedes he compartido la mayor parte de mi vida, siempre los recordaré. A la gran Familia *Casalla* y *Daza* siempre los tengo presente

A las personas mas cercanas:

Elizabeth: muchas gracias de todo corazón por tu incondicional apoyo, comprensión y cariño que me has estado brindando durante estos meses de permanente estudio.

Laurence Massaut: práctica, calculadora y organizadora. Son tres palabras que la definen. Aprendí mucho de usted y le doy gracias por su empeño y atención por cada uno de los integrantes de la "Familia M3".

Franklin Pérez: le agradezco todos sus comentarios y opiniones formuladas durante la realización de este trabajo. Aprendí a ser mas crítico y observador de lo que sucede en nuestro entorno.

Compañeros de maestría: Dos años me sirvieron para conocer y aprender un poquito de cada uno de ustedes. Agradezco a cada uno de ustedes por todos los favores recibidos. Les deseo mucha suerte y éxitos en este nuevo peldaño escalado.

Yuri: experiencia. *Rene*: "Cuba ": sinceridad. *Galo*: amabilidad y cordialidad. *William*: integrador de la mejor maestría "M3". *Marita*: alegría y unión. *María Elena S*. : dedicación y esfuerzo. *María Elena Q*: fortaleza. *Mervin*: soñadora.

A *César, Mariuxi* y *Yordan*, fuimos el mejor equipo en Genética y me siento contento de haber compartido y aprendido mucho de ustedes. Agradezco al jefe de operaciones Andrés Pedrazoli, personal directivo y administrativo de la Fundación CENAIM-ESPOL que fueron colaboradores durante mis estudios y la ejecución de este trabajo.

DEDICATORIA

A mis padres...

INDICE

LISTA DE FIGURAS	xi
LISTA DE TABLAS	xii
LISTA DE ABREVIATURAS	xiii
RESUMEN	xiv
ABSTRACT	XV
1. INTRODUCCIÓN	1
2. ANTECEDENTES	4
2.1. GENÉTICA DE POBLACIONES	4
2.2 MARCADORES GENETICOS USADOS EN ESTUDIOS POBLACIONALES	6
2.2.1. Isoenzimas	6
2.2.2. ISSRs (Inter Simple Sequence Repeats).	7
2.2.4. RFLP (Restriction Fragment Length Polymorfism)	8
2.2.5. SSCP (Single Strand Conformational Polymorphism)	8
2.2.6. Microsatélites o SSR (Simple Sequence Repeat)	8
2.3. GENÉTICA POBLACIONAL EN CAMARONES PENEIDOS	11
3. MATERIALES Y MÉTODOS	16
3.1. MATERIAL BIOLÓGICO	16

3.2 EXTRACCIÓN DE ADN	17
3.3. AMPLIFICACIÓN DE MICROSATÉLITES POR PCR	17
3.4 ELECTROFORESIS	19
3.5 TINCIÓN DE PLATA	20
3.6 FOTOGRAFÍA Y DETERMINACION DE TAMAÑOS DE LAS BANDAS	21
3.7 ANÁLISIS GENÉTICO DE LA INFORMACIÓN	21
3.7.1 Diversidad genética intrapoblacional	21
3.7.1.1. Polimorfismo ó <i>Po</i>	21
3.7.1.2. Número de alelos ó (<i>Na</i>)	21
3.7.1.3. Heterogocidad observada ó Ho	22
3.7.1.4. Heterocigocidad esperada ó <i>He</i>	22
3.7.1.5 La frecuencia alélica ó P_i	22
3.7.1.6. Equilibrio Hardy-Weinberg (H-W)	23
3.7.2. Diversidad genética entre poblaciones	24
3.7.2.1. Estadísticos F y comparaciones entre poblaciones	24
3.7.2.2. AMOVA	24
3.7.2.3. Distancia genética de Nei's 1978 y UPGMA (Unweigthed Pair Group	Mean
Analysis).	24
4. RESULTADOS	26
4.1. DIVERSIDAD GENÉTICA INTRAPOBLACIONAL	26
4.2. DIVERSIDAD GENÉTICA INTERPOBLACIONAL	31

5. DISCUSIÓN	37
5.1. DIVERSIDAD GENÉTICA INTRAPOBLACIONAL	37
5.2. DIVERSIDAD GENÉTICA INTERPOBLACIONAL	42
5. CONCLUSIONES	51
7. RECOMENDACIONES	52
3. BIBLIOGRAFÍA	53
ANEXO I	61
ANEXO II	68

LISTA DE FIGURAS

Figura 1. Esquema de formación de bandas a partir de un locus microsatélite10
Figura 2. Puntos de muestreo de <i>Litopenaeus vannamei</i>
Figura 3. Diversidad genética de <i>L. vannamei</i> en poblaciones ecuatorianas
Figura 4. Frecuencias alélicas versus tamaño de alelos (pares de bases) para cada locus
microsatellite en todas las muestras de L. vannamei colectadas en la costa
ecustoriana
Figura 5. L. vannamei. UPGMA en poblaciones ecuatorianas. (a) Agosto 2002 y (b)
Mayo 2003
Figura 6. UPGMA en L. vannamei. Agrupamiento de muestreos 2002 y 2003

LISTA DE TABLAS

Tabla 1. Caracterización de los 8 loci microsatélites en el camarón blanco del	
Pacífico L. vannamei	18
Tabla 2. Reactivos usados para la reacción de amplificación de una muestra mediante	
PCR	19
Tabla 3. Pasos para la tinción con nitrato de plata	20
Tabla 4. Resumen de la variación genética de 8 loci microsatélites en poblaciones	
silvestres de <i>L. vannamei</i> en Ecuador	27
Tabla 5. Promedio general de los ocho loci para las poblaciones ecuatorianas	
muestreadas	28
Tabla 6. Valores de probabilidad de Hardy-Weinberg en L. vannamei en 8 microsatélite	
para poblaciones ecuatorianas	31
Tabla 8. Estimados de diferenciación F_{ST} entre pares de poblaciones para los 8 loci	
microsatélites en poblaciones silvestres ecuatorianas de L. vannamei	32
Tabla 9. Analisis de varianza molecular (AMOVA) para 8 loci microsatélites en 12	
poblaciones silvestres de <i>L. vannamei</i> en Ecuador	33
Tabla 10. Distancias genéticas de Nei, 1978 en L. vannamei en Agosto de 2003 y Mayo	
de 2003	34
Tabla 11. Distancia genética de Nei, (1978) en L. vannamei entre poblaciones	
ecuatorianas	35

LISTA DE ABREVIATURAS

Θ_{ST}	Indice de fijación de Weir y Cockeham 1984, análogo al F_{ST}
$\Phi_{ m ST}$	Indice de fijación obtenido en AMOVA, análogo al F_{ST}
ADN	Acido desoxirribonucleico
AFLP	Amplified Fragments Length Polymorfism
AMOVA	Analysis of Molecular Variance
ATA	Atacames
BAL	Ballenita
D	Distancia de Nei
dNTP	Desoxi-nucleótidos trifosfatados
F_{ST}	Indice de fijación
GenAlEx	Genetic Analysis in Excel
G_{ST}	Indice de fijación de Nei 1973
H.W	Hardy Weinberg
H_E	Heterocigocidad esperada
H_O	Heterocigocidad observada
Ι	Primer Muestreo (Agosto 2002)
II	Segundo Muestreo (Mayo 2003)
IAM	Infinite Alelle Model
ISSR	Inter Simple Secuence Repeat
Р	Valor de probabilidad
PBL	Puerto Bolívar
PCR	Polymerasa Chain Reaction
PCY	Puerto Cayo
PED	Pedernales
Pi	Frecuencia alélica
Ро	Polimorfismo
POS	Posorja
RAPD	Random Amplified Polymorfic DNA
RFLP	Restriction Fragment Length Polymorfism
SCL	San Clemente
SMM	Stepwise Model Mutation
SSCP	Single Strand Conformation Polymorfism
SSR	Simple Sequence Repeat
TFPGA	Tools for Population Genetics Analysis

RESUMEN

Con el fin de determinar la estructura poblacional en el camarón blanco, un total de 560 individuos de Litopenaeus vannamei fueron colectados durante dos épocas (agosto 2002 y mayo 2003) en 7 zonas del litoral ecuatoriano. Para determinar diversidad genética, distancias y estructura poblacional entre estos puntos de muestreo, se emplearon 8 loci tipo microsatélites. Los resultados revelan un 100% de polimorfismo para todos los loci. El índice de diversidad, expresado como heterocigocidad esperada, fluctuó entre 0,71 y 0,83 con un promedio de $He = 0,80\pm0,02$, mientras que la heterocigocidad observada fue Ho = $0,50\pm0,05$. El promedio de alelos por loci fue de $12,2\pm0,78$. El equilibrio de Hardy-Weinberg se desvió significativamente en todos los loci (p < 0,0001), debido a baja heterocigocidad, posiblemente por la presencia de alelos nulos. Se encontró diferenciación genética moderada entre las zonas estudiadas ($F_{ST} = 0,0576$). El análisis de varianza molecular, AMOVA, corroboró estos resultados dando valores de $\Phi_{ST} = 0,051$ (p = 0,001) similares a los valores de F_{ST} . El promedio de distancia genética de Nei's entre las poblaciones del primer muestreo fue $D_I = 0,1778$, mientras que en el segundo fue mayor $D_{II} = 0,2652$. Los gráficos de UPGMA en el primer muestreo visualizan un solo patrón jerárquico. En el segundo, en cambio, se presentaron dos nodos entre la región del norte y del sur. La diferenciación genética entre poblaciones ecuatorianas podría estar influenciada por variaciones estacionales y se acentúa en temporada cálida en la zona del norte ecuatoriana.

ABSTRACT

A total of 560 wild shrimp of *Litopenaeus vannamei* were collected during two sampling campaigns (August 2002 and May 2003) in seven fishing grounds along the Ecuadorian coast. In order to determinate the diversity, distance and population structure, eight microsatellites were used to generate DNA profiles. These loci were highly polymorphic (100%) with a expected heterozygosity between 0.71 and 0.83 and an average of He = $0,80\pm0,02$. The observed heterozygosity (*Ho*) was low for all loci (Lvan-54 $0,36\pm0,07$; Lvan-84 0,48 \pm 0,16; Lvan-148 0,31 \pm 0,12; 0,05 Lvan-159 0,34 \pm and Lvan-160 0,36 \pm 0,09) with an average of $Ho = 0.50\pm0.05$. Allelic diversity was 12.2 ± 0.78 . Deviations from the Hardy-Weinberg equilibrium were significant for all loci (p < 0.0001) due probably to the presence of null alleles. Analysis at eight loci microsatellite revealed genetic differentiation between the populations from of the Ecuadorian Coast at F_{ST} = 0,0576. The analysis of molecular variance, AMOVA, corroborated the Fst values with $\Phi_{ST} = 0.051$ and p = 0.001. The pairwise average of Nei's distances between all the sites of the first sampling was $D_I = 0,1778$, whereas in the second sampling D_{II} was greater (0,2652). The UPGMA in the first sampling showed a single jerarquic pattern whereas the second sampling showed two nodes between the north and south regions. Genetic differentiation between Ecuadorian populations appears to be related to seasonal variations in the warm season in the zone of the north.

1. INTRODUCCIÓN

El camarón blanco *Litopenaeus vannamei* se distribuye en el Pacífico Este, desde Sonora en México, hasta Tumbes, en Perú (Dore y Frimont, 1987). Es la especie mas explotada económicamente en la acuicultura ecuatoriana y ha alcanzado un alto nivel de producción a nivel de pesquerías (Marriot, 2003).

El uso de reproductores del medio silvestre constituye un serio riesgo para la actividad acuícola, puesto que ellos son vectores de virus de alta patogenicidad. Frente a esta situación, se han implementado programas de mejoramiento genético para obtener individuos con resistencia a patógenos, mayor tasa de crecimiento y eficiencia en conversión alimenticia (Argue *et al.*, 2002 ; Davies y Hetzel, 2000 ; Alcívar-Warren *et al.*, 1994). Sin embargo el mantenimiento de cruces reproductivos en ciclo cerrado entre individuos estrechamente emparentados, sin un adecuado programa de selección, puede conducir al aumento en la consanguinidad y la disminución del número efectivo de alelos, llevando a una consistente e indeseable reducción de la variabilidad genética, durante la producción de larvas (Sbordoni *et al.*, 1986).

Para prevenir estos colapsos en el futuro, la elección de stock de reproductores de camarones a partir de poblaciones con alta diversidad genética, constituye el primer paso en un programa de selección. Una adecuada selección de poblaciones base de mejoramiento, puede garantizar la sustentabilidad de la industria a largo plazo (Sbordoni *et al.*, 1986; Benzie, 2000; Davies y Hetzel, 2000 y Wuthisuthimethavee *et al.*, 2003;).

Las poblaciones naturales poseen alta variabilidad genética, que son el resultado de miles de años de adaptación a condiciones bióticas y abióticas cambiantes (Sunden y Davies, 1991 y Wolfus *et al.*, 1997). Además, poblaciones con variantes alélicas únicas y genéticamente diferenciadas deben tener un manejo especial para prevenir la pérdida de biodiversidad génética (Grandjean y Souty-Grosset, 2000).

Ecuador posee una extensa área marina con numerosos hábitat y ambientes estuarinos que son propicios para el ciclo de vida del camarón *L. vannamei*. Esta especie debe haberse adaptado a las fluctuaciones de temperatura y corrientes marinas (Schaffer-Novelli, 1983). Algunos estudios preliminares realizados en individuos silvestres de *L. vannamei* en la provincia del Guayas (Ecuador) revelan la presencia de numerosas variantes alélicas y alta heterocigocidad (Sunden y Davies, 1991 y Wolfus *et al.*, 1997).

Sin embargo durante los últimos 20 años las modificaciones en el ecosistema de manglar, por el cultivo de camarón, (Tobey *et al.*, 1998), junto a los escapes accidentales de piscinas de cultivo, podrían alterar los stocks genéticos y llevar a problemas de estabilidad en la estructura poblacional (Travis, 2002).

Existen varias herramientas para evaluar el estado actual de la diversidad genética en las poblaciones naturales producto de los avances en Biología Molecular (Silva y Ruso, 2000). Los marcadores genéticos, herramientas basadas en información contenida en las proteínas o en el ADN de cada individuo, han aparecido en una amplia variedad de formatos. Estudios pioneros en diversas especies de camarón con isoenzimas, marcadores basados en variaciones a nivel de proteínas específicas, han hallado bajos niveles de polimorfismo y algunos no han mostrado diferenciación entre poblaciones (Lester, 1979 y

1983; Sunden y Davies, 1991; Sevigny *et al.*, 2000). Otros marcadores basados en PCR han sido diseñados para detectar diferencias en la secuencia de ADN. Sin embargo la elección entre una técnica y otra depende de la disposición de equipos, factibilidad económica y cantidad de variación detectada (Silva y Ruso, 2000)

Los microsatélites o SSRs (Simple Sequence Repeats) constituyen uno de estos métodos recientes para evaluar poblaciones cultivadas y silvestres. Se caracterizan por ser secuencias simples repetitivas compuestas de no mas de seis bases nucleotídicas, que se repiten en tándem a lo largo del ADN, en organismos eucariotas. Son excelentes marcadores genéticos moleculares porque son codominantes, es decir se puede diferenciar ambos alelos presentes en un individuo. Además son altamente polimórficos, exhibiendo un gran número de bandas variables y se ajustan a los modelos de segregación mendeliana (Goldstein y Schlötterer, 1999). Los microsatélites son fáciles de separar y medir mediante electroforesis (Rahman, 2000) y por ello han sido aplicados para analizar diversidad genética y diferenciación genética en poblaciones silvestres de camarón (Wolfus *et al.*, 1997 ; Brooker y Benzie, 2000 ; Xu *et al.*, 2001; Espinosa *et al.*, 2002).

El objetivo de este estudio es determinar la existencia o no de estructura poblacional del camarón *L. vannamei* y medir las distancias genéticas entre puntos de muestreo a lo largo de la costa ecuatoriana. Esta información permitirá diseñar programas de adquisición de reproductores para programas de mejoramiento genético. Igualmente la información obtenida sobre diversidad genética, servirá de apoyo para planes de mantenimiento y conservación de poblaciones naturales desde el punto de vista pesquero.

2. ANTECEDENTES

2.1. GENETICA DE POBLACIONES

Desde la óptica del genetista, una población es un grupo de organismos de la misma especie que vive en una zona geográficamente restringida, en donde cualquier miembro puede reproducirse potencialmente con otro miembro del sexo opuesto (Hart y Clark, 1997). Sin embargo tal definición puede variar de especie a especie, puesto que algunas no se encuentran distribuidas homogéneamente.

La presencia de fuerzas externas como variaciones ambientales, climáticas, barreras geográficas y la interacción con otras especies, son las causante de división en poblaciones (Aubert y Ligthner, 2000; Benzie, 2000; Silva y Ruso, 2000). Debido a estos factores, grupos de organismos son capaces de adaptarse a las nuevas condiciones y presentan cambios sistemáticos en la frecuencia alélica. Estas unidades son llamadas poblaciones locales (Hart y Clark, 1997).

En 1926 el genetista Sewall Wright desarrolló el concepto de variación de la frecuencia de alelos, la cual consiste en la formación de grupos con frecuencias alélicas diferentes, a partir de poblaciones grandes que se reproducen de forma aleatoria (Rusell, 1992). A partir de estas observaciones, Wrigth logró cuantificar y establecer diferencias genéticas entre subgrupos dentro de una población. Su hallazgo sobre reducción de organismos heterocigotos en subgrupos poblacionales (causado por consanguinidad), las enmarcó dentro de una ley conocida como índice de fijación, estadística de Wright o estadística de F (Hart y Clark, 1997).

Existen varios tipos de índices de fijación y cada uno de ellos difíere de acuerdo al grupo jerárquico poblacional que se esté analizando. Cuando se presenta disminución de heterocigocidad (H) en los individuos con respecto a subpoblaciones se habla de F_{IS} . Cuando la disminución en H se efectúa sobre la subpoblación con respecto a una región, entonces hablamos de F_{SR} . Finalmente la estadística mas usada es la que evalúa la variación de H entre subpoblaciones con respecto a una población total, denominada la estadística F_{ST} .

Los valores de F_{ST} oscilan entre 0 y 1. Wright en 1978 sugirió algunos valores para la interpretación de su estadístico; valores entre 0 y 0,05 se considera muy poca diferenciación; valores entre 0,05 y 0,15 moderada diferenciación; entre 0,15 y 0,25 alta diferenciación y por encima de 0,25 una muy alta diferenciación genética entre subgrupos dentro de una población (Hart y Clark, 1997).

Varios autores han propuesto equivalentes de la estadística de F_{ST} como los planteados por Nei, en 1973 (G_{ST}) y Weir y Cockerham en 1984 (Θ_{ST}). En 1992, Excoffier *et al* diseñan el estadístico Φ que es un estimador de los componentes de varianza y análogo a las estadísticas F, pero con la ventaja que puede ser usado tanto para información haplotípica (marcadores moleculares dominantes como AFLP, RAPD, ADNmt, cromosoma Y) y genotípica (presencia de dos o mas alelos en cada locus como las secuencias doble de ADN, isoenzimas, RFLP y microsatélites) (Excoffier *et al.*, 1992).

El análisis de AMOVA constituye un marco de referencia para el estudio de la variación molecular. El análisis de varianza molecular permite estimar los principales componentes de varianza y análogos a las estadísticas de F, reflejando la diversidad genotípica o

haplotípica a diferentes niveles de subdivisión jerárquica, pudiendo ser usado para diferentes tipos de datos moleculares (Excoffier *et al.*, 1992).

Con la estimación distancia genética, es posible determinar los tiempos de separación entre y dentro de las poblaciones basado en los cambios de la frecuencia alélica. A partir de la matriz de distancias entre poblaciones, es posible hacer una reconstrucción gráfica evolucionaria o dendrograma mediante un algoritmo de agrupamiento o cluster como el UPGMA. Cada nodo dentro del dendrograma significa un agrupamiento dentro de la población (Goldstein y Shlöterer, 1999).

Para garantizar un adecuado ajuste del dendrograma a las poblaciones, se incluye el "Bootstraping", que es una técnica de estadística no paramétrica y consiste en generar números aleatorios a partir de los datos de una muestra y obtener un estimado del parámetro poblacional.

2.2 MARCADORES GENETICOS USADOS EN ESTUDIOS POBLACIONALES

Existen varios factores que determinan la elección de una técnica molecular en el estudio de poblaciones silvestres, entre ellas tenemos: recursos económicos del laboratorio, tradición, uso y avance tecnológico de las técnicas actuales (Silva y Russo, 2000). A continuación se describen las principales técnicas moleculares usadas en estudios poblacionales.

2.2.1. Isoenzimas.

Desde su implementación en 1959, este método sigue siendo usado para estudios bioquímicos y evolucionarios y constituyó una de las mayores herramientas para el

análisis de genética de poblaciones (Richardson, *et al.*, 1986). Esta técnica está basada en la extracción de proteínas de diversos tejidos, las cuales son separadas a través de una matriz de apoyo (generalmente almidón o poliacrilamida) en presencia de un campo eléctrico. Por este método se examina la variación de los alelos de una proteína en un mismo locus y puede ser empleada para determinar las características mendelianas de un grupo de organismos, por ser un marcador molecular codominante (Lester, 1979 y 1983; Sbordoni *et al.*, 1986; Sunden y Davies, 1991; Alcivar-Warren *et al.*, 1994; Hoelzel, 1998; De la Rosa-Velez *et al.*, 1999).

Sin embargo, la mayor parte de los estudios realizados con isoenzimas revelan pobre diferenciación en poblaciones silvestres de camarón, debido a su limitada capacidad de detectar polimorfismo (Lester, 1979; Sunden y Davies, 1990; Sevigny *et al.*, 2000).

2.2.2. ISSRs (Inter Simple Sequence Repeats).

Son marcadores moleculares arbitrarios de dos o tres repeticiones, formados por 4 a 10 nucleótidos. Permiten amplificar secuencias repetitivas cortas tipo microsatélite mediante PCR, para dar un patrón de bandas alélicas hipervariables, pero de carácter dominante. Esta técnica puede ser usada en estudios de heredabilidad de locus, puesto que ha demostrado aproximación a las proporciones mendelianas de un marcador dominante (Tsamura *et al.*, 1996). Sin embargo en estudios poblacionales ha demostrado una baja capacidad para detectar variabilidad genética (Fresneda, 2003).

2.2.3. RAPD (Random Amplified Polymorphic DNA)

Este método utiliza pequeños iniciadores (entre 10 y 12 nucleótidos) que amplifican secuencias a lo largo de un genoma mediante PCR. Permite visualizar patrones de bandas

dominantes cuyo número depende del tipo de primer utilizado (Alcivar-Warren *et al.*, 1994; García y Benzie, 1995; Pérez, 1999; Aubert y Lightner 2000). Sin embargo su utilización requiere de un extensivo proceso de optimización por ser un marcador generador de bandas aleatorias. Adicionalmente se ha reportado una falta de reproducibilidad bajo las condiciones tradicionales de amplificación que dependen de la calidad del iniciador y de las condiciones de reacciones por PCR (Hoelzel, 1998).

2.2.4. RFLP (Restriction Fragment Length Polymorfism)

En esta técnica el genoma de un organismo es cortado en sitios específicos con enzimas de restricción, corridas en geles y el ADN transferido a membranas de nitrocelulosa. Los alelos de un gen son detectados mediante sondas de ADN que se unen a las secuencias complementarias del genoma de la muestra. Las diferencias son visualizadas gracias a moléculas reporteras radioactivas o no radioactivas que forman parte de la sonda utilizada. Esta técnica ha sido usada para examinar el grado de diferenciación en ADN mitocondrial y nuclear en *L. vannamei* (Alcivar-Warren *et al.*, 1994)

2.2.5. SSCP (Single Strand Conformational Polymorphism)

Emplea la misma metodología que los microsatélites pero en este caso hay una desnaturalización del ADN por calor, asociada a un agente desnaturalizante (formamida o urea). Los fragmentos son separados por migración electroforética (Silva y Russo, 2000). Esta técnica es aplicable para estudios de mapeo genético y genética poblacional en camarones Peneidos (Tong *et al.*, 2002).

2.2.6. Microsatélites o SSR (Simple Sequence Repeat)

Los microsatélites son secuencias simples repetitivas no codificantes (1 - 6 bp) que se encuentran en el ADN (Newton y Graham, 1997). Son abundantes en el genoma de

eucariotas. Su importancia radica en que puede ser usado en mapeo genético, caracterización del genoma, pruebas de identificación y paternidad, diferenciación genética, selección de reproductores y estudios poblacionales. Los microsatélites son marcadores codominantes que muestran herencia mendeliana y son altamente polimórficos. (Bagshaw y Buckholt, 1997; Ball y Chapman, 1998; Moore *et al.*, 1999; Pongsonboom *et al.*, 2000; Espinoza *et al.*, 2001 y 2002; Cruz *et al.*, 2002; Robainas *et al.*, 2002; Ball y Chapman, 2003; Xu *et al.*, 1999 y 2001).

La formación de bandas (alelos) es el resultado de la amplificación llevada a cabo por PCR, junto a la acción de iniciadores específicos que se acoplan corriente arriba y abajo de la secuencia repetitiva del ADN molde (Fig. 1).

La visualización de bandas se hace por medio de la tinción en una matriz de poliacrilamida que ha corrido previamente en electroforesis y permite alto grado de separación entre alelos. En el caso de alelos distintos, cada uno tiene tamaños diferentes - en pares de bases- que son heredados de cada uno de los organismos progenitores.

Para explicar los altos niveles de polimorfismo que presentan los microsatélites, se han propuesto varios modelos de mutación: el primero explica que las variantes alélicas son causadas por la adición o sustracción de una o varias bases nucleotídicas dentro de cada secuencia repetida, este modelo es conocido como SMM (Stepwise Mutation Model).

Figura 1. Esquema de formación de bandas a partir de un locus microsatélite.

Otro modelo sugiere que la formación de alelos se origina de forma infinita o IAM (Infinite Alelle Model), el tercer modelo o KAM (K Alleles Model)] afirma que K alelos diferentes producen nuevas mutaciones, excluyendo el estado original y el modelo GSM o modelo generalizado paso a paso, que indica que el tamaño de los alelos es modificado por x unidades, donde x es aleatorio para cualquier distribución de varianza finita. Sin embargo el modelo SMM parece ser el mas adecuado, debido a que puede reflejar una

mejor diferenciación entre los loci microsatélite (Hardy *et al.*, 2003). La tasa de mutación en microsatélites varía de 10^{-3} a 10^{-6} (Hoelzel, 1988).

2.3. GENETICA POBLACIONAL EN CAMARONES PENEIDOS

Lester, (1979) aplicó la técnica de isoenzimas a tres especies de crustáceos (*P. aztecus*, *P. doudarum* y *P. setiferus*) en el Golfo de México y reporta la ausencia de diferenciación genética con 24 loci examinados, concluyendo que el flujo de larvas, juveniles y camarones adultos, es el principal responsable de la continuidad genética en el Golfo de México. Posteriormente en 1983, mediante 18 loci examinados, halla un 16% de polimorfismo y bajos niveles de heterocigocidad (2 %) para *L. vannamei*.

Sbordoni *et al* (1986) utilizando también isoenzimas, reportan en *P. monodon*, los efectos de la depresión en la variabilidad genética en poblaciones cultivadas demostrando la disminución en los niveles de heterocigocidad (del 10,2 % al 3,9 %) producto de la domesticación durante cinco generaciones.

Estudios realizados por Sunden y Davies (1991) sobre evaluación de la variación genética en poblaciones de camarones, usando isoenzimas con individuos silvestres provenientes de México, Panamá, Ecuador y un grupo destinado para programas de mejoramiento genético, demostraron que los camarones ecuatorianos presentaron el mas alto índice de heterocigocidad, mientras que la población en cautiverio mostró el menor. Además varios loci en la población ecuatoriana revelaron diferencias en la frecuencia alélica con respecto a las poblaciones de Panamá y México. Benzie (1993) encontró diferenciación genética en poblaciones de *Penaeus monodon* colectadas en las costa este y oeste del litoral australiano usando RFLP en ADN mitocondrial e isoenzimas.

Xu *et al* (2001) evaluaron la diversidad genética en *P. monodon* mediante seis microsatélites, reportando heterocigocidad entre 47 y 100% y los valores de F_{ST} mostraron diferenciación genética entre poblaciones cultivadas y silvestres.

Alcivar-Warren *et al* (1994) usando RFLP, RAPDs e isoenzimas, evaluan la diversidad genética de familias de camarones cultivadas en un programa de mejoramiento y poblaciones silvestres provenientes del México y Ecuador, hallando bajo porcentaje de polimorfismo mediante isoenzimas. A pesar de esto, la población ecuatoriana presenta el nivel mas alto de polimorfismo y heterocigocidad (16,67% y 0,065 \pm 0,025 respectivamente). De la Rosa-Velez *et al* (1999) reporta por medio de isoenzimas altos niveles de polimorfismo de 25% y 15,63% y heterocigocidad de 10,5% y 7,6% para *L. vannamei* y *P. stylirostris* respectivamente en el Golfo de California. La porcentaje de similitud entre las dos especies fue de 89,1%, señalando que estos dos especies podrían ser candidatos para planes de hibridización.

Los microsatélites han sido utilizados también para analizar la diversidad genética en programas de mejoramiento genético, evaluando muestras de poblaciones silvestres y cultivadas. De acuerdo a esos resultados las hembras reproductoras provenientes de Ecuador, poseen un alto nivel de polimorfismo (45 al 100%) (Wolfus *et al.*, 1997).

Pérez (1999) usó la técnica de RAPD para determinar la variabilidad genética en poblaciones silvestres ecuatorianas e individuos provenientes de programas de ciclo cerrado en *L. vannamei*. En este estudio se reportó niveles de heterocigocidad entre 0,105 y 0,144 para ambos tipos de poblaciones. El índice de diferenciación genética fue F_{ST} de 0,018. La mayor distancia genética reportada corresponde a los puntos de muestreo extremos que corresponden a la Provincia de El Oro y Esmeraldas. En ese estudio se sugirió la presencia de insipiente estructura poblacional, que podría ser confirmada con el uso de técnicas de mayor discriminación como microsatélites.

En el camarón *Pandulus borealis,* Sevigni *et al* (2000) estudiaron la variabilidad genética en seis regiones usando ocho loci de isoenzimas. Sus datos concluyeron que la inexistencia de diferenciación genética espacial y temporal podría ser producto del flujo de genes dentro de su área de estudio. Además sugieren que se deben emplear otras técnicas moleculares y muestreos adicionales para comprobar la hipótesis general sobre la existencia de panmixia.

El desarrollo de microsatélites en especies de camarón ha sido una tarea difícil y existen pocas referencias disponibles. El problema parece ser la naturaleza altamente repetitiva del genomio del camarón que no permitiría obtener alto número de secuencias utilizables para diseño de iniciadores de PCR (F. Pérez, comunicación personal). Ball y Chapman (1998) desarrollaron microsatélites en *P. setiferus* y establecieron que estos marcadores son herramientas útiles para estudios de población y selección de programas de reproductores. Bagshaw y Buckholt (1997) aislaron una secuencia pentanucleótida de microsatélite en *L. vannamei*. De acuerdo a esos autores la secuencia pentanucleótida ocupa un 7% del genomio del camarón blanco. Pongsomboon *et al* (2000) caracterizaron

microsatélites tri y tetranucleótidos en *P. monodon* con alto nivel de polimorfismo (21 a 29 alelos y heterocigocidad entre 18 a 89 %) y bajo nivel de transferibilidad entre Peneidos. En el año 2002, Robainas *et al* aislaron varios microsatélites para *Farfantenaeus notialis* en Cuba, hallando un alto polimorfismo que va de 4 a 33 alelos y una heterocigocidad entre 56% y 81%.

Pérez (1999), usó la técnica de RAPD para determinar la variabilidad genética en poblaciones silvestres ecuatorianas e individuos provenientes de programas de ciclo cerrado en *L. vannamei*. En este estudio se reportó niveles de heterocigocidad entre 0,105 y 0,144 para ambos tipos de poblaciones. El índice de diferenciación genética fue F_{ST} de 0,018. La mayor distancia genética reportada corresponde a los puntos de muestreo extremos que corresponden a la Provincia de El Oro y Esmeraldas. En ese estudio se sugirió la presencia de insipiente estructura poblacional, que podría ser confirmada con el uso de técnicas de mayor discriminación como microsatélites.

Travis (2002), asocia la presencia de estructura genética en *L. vannamei* a la mezcla de larvas cultivadas y silvestres, debido al desbordamiento de piscinas camaroneras, en el Golfo de Fonseca (Honduras) durante el paso del huracán Mitch en 1998. Los valores de F_{ST} son los mas áltos publicados para *L. vannamei* ($F_{ST} = 0,25$), reportando una pronunciada diferenciación genética.

En el 2003, Fresneda realizó un trabajo sobre genética poblacional en *L. vannamei* en la costa ecuatoriana mediante la técnica de ISSR_s. Sus resultados señalan un bajo nivel de variación genética entre poblaciones ($F_{ST} < 0,001$; p = 0,752). Posteriormente Ball y Chapman, (2003) hallaron bajos niveles de variación genética en *P. setiferus* entre las

poblaciones del golfo de México y la costa oriental de EE.UU. (análogo de $F_{ST} = 0,001$; p = 0,04) probablemente asociado a una alta varianza reproductiva y flujo de genes a lo largo de la línea costera.

3. MATERIALES Y MÉTODOS

3.1. MATERIAL BIOLÓGICO

Las zonas de muestreo se ubicaron a lo largo del litoral ecuatoriano, aproximadamente desde cero grados y seis minutos latitud norte (0° 6′ N) hasta los tres grados y diecisiete minutos latitud sur (3° 17′ S) y desde los ochenta grados longitud oeste (80°0′ O) hasta los ochenta y un grados longitud este (81° 0′ E). Abarcó los siguientes sitios: Atacames, Pedernales, San Clemente, Puerto Cayo, San Pablo, Ballenita, Posorja y Puerto Bolívar (Fig. 2).

Figura 2. Puntos de muestreo de *Litopenaeus vannamei*. 1. Atacames, 2. Pedernales, 3.San Clemente, 4. Puerto Cayo, 5. Ballenita, 6. Posorja, 7. Puerto Bolívar.

La primera colección de ejemplares adultos de *L. vannamei* se realizó en el mes de agosto del 2002 y comprendió las regiones de Atacames, Pedernales, San Clemente, Puerto Cayo, Posorja y Puerto Bolívar. La segunda colección se hizo en mayo de 2003 y abarcó Atacames, Pedernales, San Clemente, Puerto Cayo, Ballenita y Posorja. Todos los camarones provinieron de zonas de desembarque pesquero con un promedio de 50 individuos por sitio de muestreo.

Posteriormente las muestras se conservaron en etanol 100 % y se transportaron al Centro Nacional de Acuicultura Marina del Ecuador (CENAIM) para la extracción de ADN.

3.2 EXTRACCION DE ADN

El ADN se obtuvo a partir de pleópodos, para los individuos del primer muestreo y branquias para los del segundo muestreo. La técnica empleada para el aislamiento de ADN fue Chelex modificado (Karp *et al.*, 1998) que consistió en tomar una pequeña muestra de tejido (50-100 μ g) en un tubo Eppendorf con una mezcla de 4 μ L de proteinasa K [(Promega®) (20 mg/mL)] y 400 μ L de Chelex (BIORAD ®) al 10%. La muestras fueron incubadas en baño Maria a 56° C por 2 horas para pleópodos y 8 horas para branquias. Después de una hora, las muestras se agitaron en un vortex y se dejó el resto del tiempo en baño María. Posterior a la incubación, se calentó la muestra hasta el punto de ebullición en baño María por 10 minutos y se centrifugó a 14.000 rpm (revoluciones por minuto) durante 5 minutos.

3.3. AMPLIFICACION DE MICROSATELITES POR PCR

Se usaron ocho pares de iniciadores para *L. vannamei*, diseñados a partir de secuencias publicadas en el NCBI (National Center for Biotechnology Information). La

estandarización de la temperatura óptima de ligamiento y la concentración de cloruro de magnesio (MgCl₂) para cada iniciador se determinó previamente en el trabajo de Pérez y Vivanco (2003, datos sin publicar) (Tabla 1).

Tabla	1. Caracterización	de	los	8 loci	microsatélites	en	el	camarón	blanco del
	Pacífico L. vanname	ei (P	érez	y Vivan	ico, 2003 datos s	sin p	ubli	car)	

Locus	Secuencia del iniciador (5'>3')	Temperatura óptima de Ligamiento (° C)	Concentración Cloruro de Magnesio MgCl2 (m <i>M</i>)	Acceso NCBI
Lvan-54	F: TGCTTGTGAAGGTGTGTGAACGTG	47	1,0	AF360040_L
	R: CAAGATGCGTATGCACACATTGCTG			AF360040_R
Lvan-67	F: GAAGAGGCAGGGCGGATTT	59	2.0	AF360007-F0
	R: GGAAGGGTGGGAACAAGG) -	AF360007-R1
Lvan-084	F: GGGTTATGATGACCAAAG	51	2.0	AF360114-F1
	R: ATTGGGTCTCGGAGTTTA) -	AF360114-R1
Lvan-135	F: ATAATGCGAGCGTGAG	55	2.0	AF359979F
	R: ATTCCTTAGCGAACCA) -	AF359979R
Lvan-142	F: TGCTACGCCGACAATG	43	2.0	AF360029F
	R: GAAGGTGCTTGCGACA		_,*	AF360029R
Lvan-148	F: CATCATCGCTAAAATT	43	2.0	AF360051F
	R: CCTTCTGTTGTGGGTAT		_,*	AF360051R
Lvan-159	F: AAGAACGAAGTGGAGGAG	47	2.0	AF360109F1
	R: AAGCACCCAGTGTAGCC		_,*	AF360109R1
Lvan-160	F: AAGGGCAATCGAAGAAG	55	1.5	AF360109F2
	R: AAGGATTAGGGCGGATA		-,-	AF360109R2

El volumen final de mezcla por muestra para una amplificación mediante PCR fue de 9 μ L. La mezcla de PCR estuvo compuesta por ddH₂O milli-Q estéril, buffer PCR 1X [100 m*M* tris HCl (pH 9,0 a 25 ° C), 500 m*M* KCl 0,1 % Triton X-100 Promega ® (10X)], 1.0-2.0 m*M* de MgCl₂ [Promega® (25m*M*)], 0,2m*M* de dNTP [Invitrogen® (10m*M*)], 0,4 μ L de cada par de iniciador (40 μ M), 0,008 ul de Taq Polimerasa (5 U/ul) por μ L de reacción y 1 μ L de ADN molde de cada individuo proveniente de la extracción por Chelex (Tabla 2).

REACTIVO	CONCENTRACIÓN	CONCENTRACIÓN	VOLUMEN POR
	INICIAL	FINAL	MUESTRA
Agua			6,18 µL
PCR-Tampón	10 X	1 X	0,80 µL
MgCl ₂	25 µM	1- 2,0 μM	0,64 µL
dNTPs	10 µM	0,25 μM	0,16 µL
Iniciador-F	40 µM	0,4 µM	0,08 µL
Iniciador-R	40 µM	0,4 µM	0,08 µL
TAQ	5 U/µl	1 U/µl	0,008 µL
ADN			1 µL
TOTAL			9 μL

Tabla 2. Reactivos usados para la reacción de amplificación de una muestra mediante

La amplificación por PCR se realizó en tres termocicladores: PTC-200 MJ Research®, Techne Genius® y Delta Cycle I Ericom®. Los parámetros de temperatura y tiempo fueron los siguientes: temperatura inicial 94 ° C por 3 minutos, 12 ciclos a 92 ° C por 30 segundos y luego a la temperatura óptima de cada iniciador mas 12 ° C (Tabla 1) durante 30 segundos y 72° C por 1 minuto. Luego de 25 ciclos a 92 ° C por 30 segundos, la temperatura óptima para cada microsatélite por 30 segundos y un minuto a 72° C.

3.4 ELECTROFORESIS

Las muestras fueron separadas en geles no denaturantes de poliacrilamida-bisacrilamida al 6% [arcrilamida:bisacrilamida 29:1, TBE (40 m*M* Tris Base, 20 m*M* de ácido bórico y 0,5 *M* de EDTA pH 8,0), persulfato de amonio (10%) y TEMED] (Sambrock *et al.*, 1989). Los geles fueron fundidos en placas de vidrio, con espaciadores de 1 mm, polimerizados por 1 hora y pre-corridos por 15 minutos. Los productos amplificados mediante PCR fueron diluidos en tampón de carga 6X [0,25% de Azul de Bromofenol, 0,25% de Xilenocianol y 40% (w/v) de sucrosa en agua destilada] y cargados entre 1 a 5 µL de muestra para cada locus y 1 µL de carga para el marcador de talla de 25 bp (pares de bases) Promega®. Las muestras cargadas en los geles se corrieron en cámaras de electroforesis S2 (Life Technologies GIBCO BRL®) S3S (OWL Separation System®) y Sequi-Gene®-GT (BIORAD) con tampones de llenado TBE 1X y 0,5X durante 5- 6 horas a 30-35W.

3.5 TINCION DE PLATA

(1,5 L de solución)

Una vez corrido los geles, se tiñeron siguiendo la metodología de Dinesh *et al* (1995); que consistió en fijar el gel en alcohol y ácido acético, posteriormente se impregnó en solución de nitrato de plata, seguido de un enjuague con agua des-ionizada, luego se reveló con hidróxido de sodio y formaldehído. La parada de la tinción se hizo en carbonato de sodio Para cada paso en la tinción, las soluciones fueron preparadas a un volumen de 1,5 L (Tabla 3). Después de teñir el gel, se secó a temperatura ambiente y se cubrió con una lámina de acetato para ser conservados y fotografiados.

Paso	Reactivos	Duración
1. Fijación (1,5 L de solución)	10 % Etanol150 mL 0,5 % Ácido Acético 7,5 mL ddH ₂ O	15 Minutos
2. Impregnación (1,5 L de solución)	0,011 M AgNO ₃ 2,8 gr ddH ₂ O	25 Minutos
3. Enjuague (1,5 ddH ₂ O)	ddH2O1.5 L	30 Segundos
4. Revelado (1,5 L de solución)	0,75 M NaOH45 gr 0,085 M Formaldehido 10.5 mL ddH ₂ O	+/- 10 Minutos
5. Parada	0,07 M NaCO ₃ 11 gr	

3-5 Minutos

Tabla 3. Pasos para la tinción con nitrato de plata (Dinesh et al., 1995)

ddH₂O

3.6 FOTOGRAFÍA Y DETERMINACION DE TAMAÑOS DE LAS BANDAS

La fotografía de los geles de poliacrilamida se hizo sobre luz blanca, con una cámara Kodak® DC120 y la captura del patrón de bandas se hizo con el software EDAS (Electrophoresis Documentation and Analysis System Kodak® 120).

El perfil molecular de bandas de ADN para cada individuo, se hizo mediante el análisis de imagen, con el software Gen Profiler 4.05 Scanalytics®. La información exportada en bp, fue codificada de acuerdo al formato requerido para cada software mediante Excel® y Acces®.

3.7 ANALISIS GENÉTICO DE LA INFORMACION

3.7.1 Diversidad genética intrapoblacional

<u>3.7.1.1. Polimorfismo ó Po</u>

Es una condición en la cual hay presente más de dos alelos por locus a una frecuencia mayor al 5 por ciento. (Goldstein y Schlöterer, 1999). En las isoenzimas por ejemplo, por poseer pocas variantes alélicas, los niveles de polimorfismo son bajos. En cambio los microsatélites tienen múltiples variantes alélicas con altas frecuencias que resultan en un alto polimorfismo. Su cálculo se realiza determinando si existen alelos con más del 5% de frecuencia para un locus.

3.7.1.2. Número de alelos ó Na

El número de alelos constituye todas las formas alternativas que puede presentar un gen en un locus. En microsatélites el número de alelos varía en cada locus y cada uno es el resultado de los mecanismos de mutación explicados anteriormente (Rusell, 1992). Se determina por conteo directo de alelos diferentes para cada locus en cada población.
22

3.7.1.3. Heterogocidad observada ó Ho

Equivale a la proporción de individuos que presenta un par de alelo diferente, es decir que son heterocigotos, mediante conteo directo, para cada locus en una población. Se calcula por la siguiente fórmula:

$$Ho = \frac{H}{N_i}$$

Donde: $H_o = N$ úmero de individuos heterocigotos por conteo directo $N_i = N$ úmero de total de individuos para el locus *i*.

3.7.1.4. Heterocigocidad esperada ó He

Es llamada también índice de diversidad de Weir y estima la proporción de individuos que se espera sean heterocigotos para un locus en una población. Se define mediante la siguiente fórmula:

$$H_e = 1 - \sum_{i=1}^{8} p_i^2$$

Donde: $p_i = es la i-esima frecuencia para un alelo$

3.7.1.5 La frecuencia alélica o P_i

Frecuencia alélica es el número de veces que se observa un alelo (x_i) dentro del total de alelos para un locus. Es usada para describir toda la información genética presente en un locus (Rusell, 1992). Se determina de acuerdo a la siguiente fórmula:

$$\hat{p}_i = \frac{x_i}{n}$$

Donde: $x_i = N$ úmero de copia génicas en una muestra

n = Número de alelos

Polimorfismo (*Po*), número de alelos (*Na*), heterogocidad observada (*Ho*), heterocigocidad esperada (*He*) y frecuencia haplotípica (*P_i*) fueron calculadas en el presente trabajo con el programa GenAlEx (Peakall y Smouse, 2001).

3.7.1.6. Equilibrio Hardy-Weinberg ó H-W.

El equilibrio de Hardy-Weinberg establece que las frecuencias alélicas y genotípicas se mantienen constante de generación en generación, si el tamaño de la población es grande, con cruces reproductivos aleatorios y libre de fuerzas evolutivas (Rusell, 1993). Por tanto, los genotipos de un grupo de individuos en equilibrio Hardy-Weinberg serán iguales a un valor p_i^2 para homocigotos y $2p_ip_j$ para los heterocigotos.

Una población que se ajusta a un modelo panmíctico, no presentará variación significativa en la frecuencia alélica a través de rangos geográficos y sus integrantes se mantendrán en equilibrio H-W.

Para determinar equilibrio Hardy-Weinberg se utilizó el software GENEPOP. Este programa utiliza el método de cadena de Markov para estimar los valores de probabilidad significativas para la desviación en H-W. GENEPOP considera los siguientes parámetros: 10 secuencias por análisis y 1.000 permutaciones por secuencia para un total de 10.000 permutaciones (Raymond y Russet, 1995). En la cual se generan un conjunto de datos aleatorios, que simulan la frecuencia alélica esperada a partir de los datos originales. Posteriormente se comparan mediante la prueba de χ^2 chi-cuadrado (Miller, 1997).

3.7.2. Diversidad genética entre poblaciones

3.7.2.1. Estadísticos F y comparaciones entre poblaciones

El análisis de F se realizó mediante el programa GENEPOP según la prueba multilocus de Weir y Cockerham, 1984. A partir de los valores de F es posible efectuar comparaciones entre pares de poblaciones y establecer valores de diferenciación genética para cada loci. Los valores de probabilidad para estas comparaciones se obtienen mediante la cadena de Markov indicada anteriormente para el caso del equilibrio Hardy-Weinberg.

3.7.2.2. AMOVA

AMOVA es un marco de referencia para la estimación de estructura genética a partir de la información contenida en la frecuencia alélica, la cual es introducida en una matriz de distancias cuadradas euclidianas y a partir de ella se obtienen los componentes de covarianza asociado con posibles niveles de estructura genética.

La separación de los componentes de la varianza (covarianzas) y la generación de análogos de las estadísticas de F, mediante un estimador poblacional Φ , asociado a posibles niveles de estructura genética dentro de los individuos, demos, grupos de demos, poblaciones y grupo de poblaciones, fueron realizados mediante el programa GenAlEx (Peakall y Smouse, 2001).

3.7.2.3. Distancia genética de Nei´s 1978 y UPGMA (Unweigthed Pair Group Mean Analysis).

La distancia genética es una medida de la diversidad alélica entre poblaciones expresada como una función de la frecuencia genotípica. Determina la lejanía entre una población y otra basada en la frecuencia de alelos de ambos grupos. El programa TFPGA (Miller, 1997), utilizado en el presente estudio, estima la distancia estándar a partir de la siguiente fórmula:

$$Ds = -\ln[J_{XY} / \sqrt{J_X J_Y}]$$

Donde

 $J_X = \sum_{j}^{r} \sum_{i}^{m_j} x_{ij}^2 / r$ Promedios de heterocigocidad sobre el locus en la población *X*

 $J_{Y} = \sum_{j}^{r} \sum_{i}^{m_{j}} y_{ij}^{2} / r \text{ son los promedios de heterocigocidad sobre el locus en la población } Y$

 x_{ij} y y_{ij} son las frecuencias del *i*-esimo alelo al *j*-esimo locus en la población X y Y (Nei, 1972).

UPGMA permite representar gráficamente las distancias genéticas entre cada una de las poblaciones. Mediante el algoritmo implementado en el programa TFPGA, (Miller, 1997) se generaron gráficos de agrupamiento de poblaciones. TFPGA emplea "Bootstraping" o remuestreo que es una técnica no paramétrica que permite obtener nuevos estimados y dar una mejor aproximación de la distribución del estimador original (Weir, 1996).

4. RESULTADOS

4.1. DIVERSIDAD GENÉTICA INTRAPOBLACIONAL

Un total de 560 individuos fueron analizados genéticamente usando ocho loci microsatélites (Lvan-54, Lvan-67, Lvan.84, Lvan-135, Lvan-142, Lvan-148, Lvan-159 y Lvan-160) (Anexo 1). Todos los microsatélites mostraron 100 % de polimorfismo (Tabla 4). Los resultados del número de individuos analizados (N), número de alelos por locus (N_a), heterocigocidad observada (H_o) y heterocigocidad esperada (H_e), se muestra en la Tabla 5.

El promedio de individuos analizados varió de acuerdo a cada locus; Lvan-54 (39), Lvan-67 (40), Lvan-84 (32), Lvan-135 (38), Lvan-142 (38), Lvan-148 (30), Lvan-159 (38) y Lvan-160 (35). El locus Lvan-148 no pudo ser amplificado para la región de Posorja I, debido a la inadecuada fijación de las muestras y mala calidad del ADN extraído.

El número mínimo y máximo de alelos (N_a) por locus osciló entre 5,6 y 21,9 para el locus Lvan-54 y Lvan-67 respectivamente.

La heterocigocidad observada H_0 por locus fue inferior al 50% en cinco loci: Lvan-54 (0,36), Lvan-84 (0,49), Lvan-148 (0,32), Lvan-159 (0,32) y Lvan-160 (0,37). Los loci Lvan-67, Lvan-135 y Lvan-142 presentaron valores de 0,71, 0,62 y 0,81 respectivamente.

Los resultados de heterocigocidad esperada, H_e para cada locus fueron mayores a 0,79 en todos los loci, a excepción del locus Lvan-54 con 0,56.

Tabla 4. Resumen de la variación genética de 8 loci microsatélites en poblaciones silvestres de *L. vannamei* en Ecuador. (ATA Atacames; PED Pedernales; SCL San Clemente; PCY Puerto Cayo; POS Posorja; PBO Puerto Bolívar; BAL Ballenita; *N* número de individuos; N_a Número de alelos; H_o Heterocigocidad observada H_e Heterocigocidad esperada y P_o polimorfismo).

!	!						POB	LACIONE	s					!
LOCUS	!		М	JESTRE	0 20	02			Ν	UESTRE	0 200	3		! PROMEDIO
!		ATA I	PED I	SCL I	PCY I	POS I	PBO I	ATA II	PED II	SCL II	PCY II	BAL II	POS II	
Lvan-54	Ν	42	34	43	32	29	37	48	37	40	29	47	47	38,7±6,9
	Na	4	6	5	5	4	8	5	5	5	6	7	7	5,6±1,2
	Но	0,50	0,32	0,35	0,25	0,31	0,38	0,50	0,35	0,43	0,31	0,36	0,32	0,36±0,07
	Не	0,55	0,51	0,54	0,50	0,56	0,67	0,57	0,66	0,45	0,45	0,59	0,64	0,55±0,07
	Ро	100	100	100	100	100	100	100	100	100	100	100	100	100
Lvan-67	Ν	49	34	52	51	43	45	40	36	36	12	46	38	40,1±10,7
	Na	26	22	24	26	24	21	25	21	20	13	21	20	21,9±3,6
	Но	0,82	0,65	0,67	0,69	0,72	0,60	0,50	0,69	0,78	0,83	0,76	0,79	0,70±0,09
	Не	0,95	0,94	0,94	0,92	0,92	0,91	0,93	0,91	0,90	0,90	0,92	0,90	0,91±0,01
	Ро	100	100	100	100	100	100	100	100	100	100	100	100	100
Lvan-84	Ν	34	34	26	26	38	29	40	39	31	26	34	32	32,4±5,0
	Na	13	15	11	13	12	14	14	13	14	11	11	12	12,7±1,4
	Но	0,50	0,50	0,54	0,54	0,18	0,31	0,70	0,49	0,58	0,77	0,35	0,38	0,48±0,16
	Не	0,87	0,88	0,81	0,87	0,87	0,88	0,90	0,87	0,89	0,85	0,84	0,88	0,86±0,02
	Ро	100	100	100	100	100	100	100	100	100	100	100	100	100
Lvan-135	Ν	42	39	44	46	37	33	47	36	30	28	42	34	38,1±6,2
	Na	11	12	10	17	12	10	15	14	12	13	10	11	12,2±2,2
	Но	0,83	0,95	0,64	0,78	0,73	0,36	0,83	0,89	0,87	0,93	1,00	0,91	0,81±0,17
	Не	0,82	0,82	0,70	0,83	0,80	0,65	0,84	0,82	0,87	0,80	0,80	0,83	0,80±0,06
	Ро	100	100	100	100	100	100	100	100	100	100	100	100	100
Lvan-142	Ν	42	35	40	42	35	36	39	30	39	28	43	43	37,6±5,0
	Na	13	13	14	13	11	13	13	10	15	12	12	13	12,6±1,3
	Но	0,76	0,83	0,32	0,64	0,49	0,64	0,51	0,47	0,67	0,68	0,67	0,74	0,61±0,14
	Не	0,81	0,85	0,71	0,83	0,76	0,82	0,79	0,73	0,76	0,79	0,76	0,85	0,78±0,04
	Ро	100	100	100	100	100	100	100	100	100	100	100	100	100
Lvan-148	Ν	34	26	30	39	0	27	35	38	32	26	38	40	33,2±5,3
	Na	8	8	8	6	0	7	7	11	6	5	8	9	7,6±2,7
	Но	0,50	0,23	0,17	0,33	0,00	0,33	0,26	0,29	0,31	0,31	0,34	0,43	0,31±0,12
	Не	0,82	0,82	0,80	0,79	0,00	0,80	0,78	0,88	0,76	0,75	0,84	0,82	0,80±0,23
	Ро	100	100	100	100	0	100	100	100	100	100	100	100	100
Lvan-159	Ν	39	36	38	41	42	35	42	34	38	28	40	44	38,0±4,4
	Na	14	12	11	9	12	11	15	11	9	12	12	14	11,8±1,8
	Но	0,44	0,42	0,34	0,32	0,29	0,31	0,31	0,29	0,24	0,25	0,28	0,34	0,31±0,05
	Не	0,87	0,86	0,83	0,84	0,86	0,85	0,89	0,88	0,83	0,85	0,85	0,84	0,85±0,01
	Ро	100	100	100	100	100	100	100	100	100	100	100	100	100
Lvan-160	Ν	41	33	44	27	19	41	35	41	30	29	39	45	35,3±7,9
	Na	14	11	14	12	12	15	13	14	11	12	12	19	13,2±2,2
	Но	0,41	0,42	0,36	0,15	0,42	0,44	0,40	0,44	0,30	0,38	0,26	0,44	0,36±0,09
	Не	0,83	0,85	0,86	0,86	0,90	0,85	0,86	0,89	0,83	0,83	0,84	0,86	0,85±0,02
!	Ро	100	100	100	100	100	100	100	100	100	100	100	100	100

El promedio de individuos que amplificó para cada población varió entre 25,75 para la región de PCY II y 41,13 para BAL II. El número promedio general de individuos amplificados por población fue $36,37 \pm 4,73$ (Tabla 5).

Tabla 5. Promedio general de los ocho loci para las poblaciones ecuatorianas muestreadas. (ATA Atacames; PED Pedernales; SCL San Clemente; PCY Puerto Cayo; POS Posorja; PBO Puerto Bolívar; BAL Ballenita; N número de individuos; N_a Número de alelos; H_o Heterocigocidad observada H_e Heterocigocidad esperada y *Po* polimorfismo).

		Muest	treo I	Agosto	2002		Muestreo II Mayo 2003						
	ATA I	PED I	SCL I	PCY I	POS I	PBO I	ATA II	PED II	SCL II	РСҮ П	BAL II	POS II	PROMEDIO
Ν	40,38	33,88	39,63	38,00	30,38	35,38	40,75	36,38	34,50	25,75	41,13	40,38	36,37±4,73
Na	12,88	12,38	12,13	12,63	10,88	12,38	13,38	12,38	11,50	10,50	11,63	13,13	12,2±0,78
Но	0,60	0,54	0,42	0,46	0,39	0,42	0,50	0,49	0,52	0,56	0,50	0,54	$0,50\pm0,05$
Не	0,81	0,82	0,77	0,81	0,71	0,81	0,82	0,83	0,79	0,78	0,80	0,83	0,80±0,02
Po	100	100	100	100	100	100	100	100	100	100	100	100	100

Las poblaciones con mayor cantidad de alelos son: ATA POS y PCY con valores promedio de 12,88 y 13,38 (ATA I y II); 13,13 (POS II) y 12,63 (PCY I). El promedio general de alelos para todos los loci fue de $12,2 \pm 0,78$.

La heterocigocidad observada por región y muestreo fue mayor en ATA I, PCY II y POS II con valores de 0,60 , 0,56 y 0,54 respectivamente. El promedio general de heterocigocidad observada para las todos los muestreos fue 0,50 \pm 0,05. Los valores de heterocigocidad esperada H_e fueron similares en todas las zonas de muestreo, variando entre 0,77 en SCL I y 0,83 en PED II (Fig. 3). El promedio global de H_e fue 0,80 \pm 0,02.

Figura 3. Diversidad genética de L. vannamei en poblaciones ecuatorianas (ATA Atacames; PED Pedernales; SCL San Clemente; PCY Puerto Cayo; POS Posorja; PBO Puerto Bolívar; BAL Ballenita)

Una amplia variedad y tamaños de alelos se observó en cada locus. Un total de 171 alelos se observaron en todos los loci. El locus Lvan-148 presentó solo 11 alelos, mientras que el Lvan-67 generó 41. El tamaño de bandas varió entre 128 bp para el locus Lvan-54 y 332 bp para el Lvan-84 (Fig. 4). Los loci 159 y 160 se diseñaron a partir de una misma secuencia de ADN, por lo cual generó similares perfiles de heterocigocidad y frecuencias alélicas.

Los resultados del equilibrio Hardy-Weinberg (H-W) se presentan en la Tabla 6. H-W. se desvió significativamente para todos los 8 loci microsatélites (p < 0,001).

Solamente algunas poblaciones se mantuvieron significativamente en equilibrio H-W para los siguientes loci: Lvan-54 en la región de ATA II; Lvan-67 en las regiones PCY II, POS II; Lvan-135 en SCL I, PCY I y PED II y el locus Lvan-142 para ATA I , PED I, PBO I, SCL II Y BAL II (p > 0,05).

Figura 4. Frecuencias alélicas *versus* tamaño de alelos (pares de bases) para cada locus microsatellite en todas las muestras de *L. vannamei* colectadas en la costa ecuatoriana.

Tabla 6. Valores de probabilidad de Hardy-Weinberg en *L. vannamei* en 8 microsatélite para poblaciones ecuatorianas (Mediante Prueba Exacta de Fisher con 10 secuencias por análisis y 1.000 permutaciones por secuencia para un total de 10.000 permutaciones).

-	LOCUS												
POBLACION	Lvan-54	Lvan-67	Lvan-84	Lvan-135	Lvan-142	Lvan-148	Lvan-159	Lvan-160					
ATA I	0,044	0,000	0,000	0,000	$0,0525^{+}$	0,000	0,000	0,000					
PED I	0,009	0,000	0,000	0,000	$0,3593^{+}$	0,000	0,000	0,000					
SCL I	0,001	0,000	0,000	$0,0556^{+}$	0,000	0,000	0,000	0,000					
PCY I	0,000	0,000	0,000	$0,1779^{+}$	0,001	0,000	0,000	0,000					
POS I	0,005	0,000	0,000	0,017	0,000	++	0,000	0,000					
PBL I	0,000	0,000	0,000	0,000	0,1191 ⁺	0,000	0,000	0,000					
ATA II	0,0923 ⁺	0,000	0,005	0,000	0,003	0,000	0,000	0,000					
PED II	0,000	0,000	0,000	0,1089 ⁺	0,000	0,000	0,000	0,000					
SC II	0,4482 ⁺	0,047	0,000	0,003	$0,6029^{+}$	0,000	0,000	0,000					
PCY II	0,013	$0,098^{+}$	0,1337 ⁺	0,012	0,019	0,000	0,000	0,000					
BAL II	0,000	0,029	0,000	0,000	$0,2709^{+}$	0,000	0,000	0,000					
POS II	0,000	0,0962 ⁺	0,000	0,000	0,016	0,000	0,000	0,000					

⁺No se desvía significantemente de H.W (p > 0,05)

⁺⁺ No pudo ser realizado

4.2. DIVERSIDAD GENÉTICA INTERPOBLACIONAL

La Tabla 7 muestra los índices de diferenciación de poblaciones (estadísticos F) para cada locus microsatélite.

Los valores de F_{IS} indican que hay un déficit de heterocigotos para todos los loci en cada una de las regiones ($F_{IS} > 0,3916$), excepto para el locus Lvan-135 ($F_{IS} = -0,0001$).

El grado de diferenciación de poblaciones es determinado por el estadístico F_{ST} , Valores máximos de F_{ST} entre 0,0917 y 0,0719 se reportan para los loci microsatélites Lvan-135 y Lvan-142 indicando que estos son los que mas contribuyen a la diferenciación entre las poblaciones.

Locus	F_{IS}	F_{IT}	F_{ST}
Lvan-54	0,3431	0,3485	0,0082
Lvan-67	0,251	0,2642	0,0176
Lvan-84	0,4593	0,4684	0,0167
Lvan-135	-0,0001	0,0916	0,0917
Lvan-142	0,2258	0,2815	0,0719
Lvan-148	0,6102	0,6132	0,0077
Lvan-159	0,6341	0,6457	0,0317
Lvan-160	0,5709	0,5861	0,0354
TOTAL	0,3916	0,4267	0,0576

Tabla 7. Indice de diferenciación (F_{IS} , F_{IT} y F_{ST}) para 8 loci microsatélite en dos campañas de muestreo de *L. vannamei* en la costa ecuatoriana.

Se realizaron todas las combinaciones posibles entre pares de poblaciones para todos los loci microsatélites. La prueba de diferenciación de Raymond y Rousset, (1995) indicó que todos los pares de combinación son estadísticamente diferentes entre pares de poblaciones (p < 0,001) (Tabla 8). Lo anterior indica que entre las poblaciones existe alta variabilidad genética.

Tabla 8. Estimados de diferenciación F_{st} entre pares de poblaciones para los 8 loci microsatélites en poblaciones silvestres ecuatorianas de *L. vannamei*

POBLACION	ATA I	PED I	SCL I	PCY I	POS I	PBO I	ATA II	PED II	SC II	PCY II	BAL II
PED I	0,01										
SCL I	0,04	0,03									
PCY I	0,02	0,01	0,04								
POS I	0,01	0,02	0,04	0,03							
PBO I	0,02	0,02	0,04	0,03	0,03						
ATA II	0,04	0,02	0,05	0,03	0,04	0,04					
PED II	0,05	0,04	0,09	0,04	0,06	0,06	0,02				
SC II	0,05	0,05	0,08	0,03	0,03	0,06	0,03	0,03			
PCY II	0,02	0,03	0,05	0,04	0,02	0,02	0,05	0,06	0,06		
BAL II	0,02	0,02	0,05	0,02	0,04	0,03	0,03	0,04	0,03	0,04	
POS II	0,03	0,02	0,05	0,03	0,06	0,04	0,04	0,06	0,06	0,05	0,04

Todos significantes (p<0,001)

El AMOVA determinó que un 5,4 % de toda la variabilidad genética está asociada a diferenciación entre poblaciones, mientras que el 94,94 % se atribuye a variación dentro de cada región. AMOVA también corrobora la existencia de estructura genética entre las poblaciones ecuatoriana con valores análogos de $F_{ST} = 0,051$ (p = 0,0001) cuando se aglomeraron los muestreos de agosto de 2002 y mayo de 2003 (Tabla 9).

Tabla 9. Analisis de varianza molecular (AMOVA) para 8 loci microsatélite en 12poblaciones silvestres de L. vannamei en Ecuador.

Fuente	df	SS	MS	Varianza	Varianza (%)	Value Fst	Prob
Dentro Pop.	1.108	3.611,10	3,259	3,259	94,6		
Entre Pop.	11	214,95	19,540	0,175	5,4	0,051	0,0001+
Total	1.119	3.826,06	22,799		100		

⁺ Estadísticamente significativo p = 0,0001

Durante el primer muestreo, las poblaciones que presentaron menor distancia fueron Atacames y Pedernales D = 0,102 (Tabla 10). A pesar que San Clemente es la tercera población contigua a Atacames, presentó la máxima distancia D = 0,205. El promedio de distancia entre las poblaciones fue $D_I = 0,178$.

En el segundo muestreo la menor distancia genética se encuentra entre las tres primeras poblaciones de la zona norte; Atacames, Pedernales y San Clemente y la máxima ocurre entre las poblaciones de la zona norte y el resto de poblaciones; Puerto Cayo, Posorja y Ballenita (Tabla 10). El promedio de distancia entre pares de población fue $D_{II} = 0,265$.

En el UPGMA del primer muestreo las poblaciones se agrupan en un solo nodo mientras que el segundo muestreo revela la presencia de dos grupos: uno conformado por poblaciones de la zona norte (ATA II, PED II y SCL II) y el otro por poblaciones de la parte media y sur de Ecuador (PCY II, POS II y BAL) (Fig. 5).

Tabla 10. Distancias genéticas de Nei's, 1978 en *L. vannamei* (a) Muestreo 2002 y (b)
Muestreo 2003 (ATA Atacames; PED Pedernales; SCL San Clemente; PCY
Puerto Cayo; POS Posorja; PBO Puerto Bolívar; BAL Ballenita)

(a)							(b)						
	ATA I	PED I	SNC I	PCY I	POS I	PBO I		ATA II	PED II	SCL II	PCY II	POS II	BAL II
ATA I	*****						ATA II	****					
PED I	0,1022	*****					PED II	0,1351	*****				
SNC I	0,2054	0,1756	*****				SCL II	0,1745	0,1512	*****			
PCY I	0,1426	0,0819	0,1911	*****			PCY II	0,2991	0,3954	0,3388	*****		
POS I	0,0712	0,1055	0,2114	0,1686	*****		POS II	0,2879	0,4122	0,3378	0,3271	*****	
PBO I	0,1022	0,1605	0,2021	0,2093	0,1857	****	BAL II	0,1951	0,2461	0,2266	0,2457	0,2056	****

Figura 5. L. vannamei. UPGMA en poblaciones ecuatorianas. (a) Agosto 2002 y (b)
Mayo 2003. (ATA Atacames; PED Pedernales; SCL San Clemente; PCY
Puerto Cayo; POS Posorja; PBO Puerto Bolívar; BAL Ballenita).

Cuando se agrupan los dos muestreos (agosto 2002 y mayo 2003), se presentan dos grupos: uno de menor distancia entre poblaciones del primer muestreo y tres poblaciones del segundo muestreo (PCY II, BAL II y POS II) y el otro grupo de mayor distancia entre

las poblaciones de ATA II, PED II y SCL II del segundo muestreo y el resto de poblaciones (Tabla 11).

Tabla 11. Distancia genética de Nei, (1978) en L. vannamei entre poblaciones ecuatorianas. (ATA Atacames; PED Pedernales; SCL San Clemente; PCY Puerto Cayo; POS Posorja; PBO Puerto Bolívar; BAL Ballenita).

POBLACION	ATA I	PED I	SCL I	PCY I	POS I	PBO I	ATA II	PED II	SC II	PCY II	BAL II	POS II
ATA I	****											
PED I	0,054	****										
SCL I	0,207	0,176	****									
PCY I	0,133	0,082	0,191	*****								
POS I	0,065	0,106	0,211	0,169	****							
PBL I	0,101	0,161	0,202	0,209	0,186	****						
ATA II	0,221	0,153	0,291	0,165	0,271	0,262	****					
PED II	0,329	0,243	0,565	0,236	0,141	0,433	0,134	****				
SCL II	0,301	0,257	0,465	0,142	0,420	0,360	0,182	0,151	****			
PCY II	0,104	0,174	0,277	0,210	0,100	0,130	0,283	0,395	0,339	****		
BAL II	0,141	0,11	0,249	0,138	0,245	0,169	0,190	0,248	0,227	0,246	****	
POS II	0,174	0,166	0,292	0,205	0,274	0,255	0,271	0,413	0,338	0,327	0,206	****

En el UPGMA de los dos muestreos agrupados (Fig. 6), se observan tres nódulos principales; los dos primeros están formados por los individuos del primer muestreo e individuos del muestreo de mayo de 2003 (BAL II y POS II), cubriendo la parte media de la Provincia de Manabí y Provincia de El Oro. El tercer nódulo corresponde a un grupo de individuos del segundo muestreo (ATA II, PED II y SCL II) que ocupa la región media ecuatoriana (Provincia de Manabí) hasta Atacames (Provincia de Esmeraldas).

Los análisis correspondientes a los muestreos de la zona de San Pablo I (agosto de 2002) y Puerto Bolívar II (mayo 2003) no se realizaron, porque existe evidencia genética que indica que estos individuos pertenecen a otra especie estrechamente emparentada con *L. vannamei* (datos no mostrados).

Figura 6. UPGMA en L. vannamei. Agrupamiento de muestreos 2002 y 2003. (ATA Atacames; PED Pedernales; SCL San Clemente; PCY Puerto Cayo; POS Posorja; PBO Puerto Bolívar; BAL Ballenita).

5. DISCUSIÓN

5.1. DIVERSIDAD GENÉTICA INTRAPOBLACIONAL

El presente estudio utilizó la técnica de microsatélites con el fin de evaluar variabilidad genética y estructura poblacional en el camarón blanco *L. vannamei*. Los microsatélites constituye un tipo de marcadores moleculares que previamente ha sido utilizada para estudios similares en varias especies de camarones Peneidos (Wolfus *et al.*, 1997, Broker *et al.*, 2000 Broker y Benzie, 2001; Xu *et al.*, 2001; Espinoza *et al.*, 2002 y Ball *et al.*, 2003).

En estudios poblacionales con isoenzimas, el número de loci promedio de alelos se encuentra entre 1,06 a 1,56 (Benzie, 2000). Esta baja capacidad para detectar solo pequeñas fracciones de la variación en loci proteínicos representa un problema, puesto que con pocas variantes las poblaciones no pueden ser diferenciadas en área pequeñas (Sevigni *et al.*, 2000). Los microsatélites en cambio, presentan mayor cantidad de alelos (Goldstein y Schötterer, 1999). En este trabajo el número de alelos por loci varió entre 11 y 41 con tamaños entre 126 y 332 bp (Fig. 4) con un total de 171 alelos. Otros estudios en donde son usados microsatélites el número de alelos por loci varía entre 6 y 84 alelos con tamaños entre 87 y 400 bp (Broker *et al.*, 2000; Xu *et al.*, 2001 y Ball *et al.*, 2003). Para estudios genéticos es importante contar con una adecuada cantidad de alelos similar a los valores encontrados en nuestra investigación (Kalinowski, 2002).

A diferencia de los bajos niveles de polimorfismo hallados por isoenzimas en *L. vannamei* (Lester, 1983; Sunden y Davies, 1991; Alcívar-Warren *et al.*, 1994 y de la De la Rosa-Velez *et al.*, 1999) ADNmt, (García *et al.*, 1994) e ISSRs (Fresneda, 2003), los microsatélites han mostrado elevados niveles de polimorfismo (Wolfus *et al.*, 1997) Xu *et*

al., 2001 ;Espinosa *et al.*, 2002 y Ball *et al.*, 2003). En este trabajo también reportamos un 100% de polimorfismo en los 8 loci (Tabla 3 y Fig. 4).

Los niveles de heterocigocidad observada en una especie varían de acuerdo a la técnica molecular usada. Mediante isoenzimas los valores de *Ho* en *L. vannamei* son menores a 0,105 (Lester , 1983; Sunden y Davies, 1991; Alcivar-Warren *et al.*, 1994 y De la Rosa-Velez *et al.*, 1999). A partir de 1997 Wolfus *et al* realizan las primeras pruebas con microsatélites en poblaciones silvestres y cultivadas para *L. vannamei*, hallando valores entre 0,45 a 1,00 , destacando que los valores más altos en heterocigocidad se hallaban en individuos silvestres provenientes de México y Ecuador. En el 2000, Brooker y Benzie trabajando *P. monodon*, hallan *Ho* mayor del 90 % en tres loci microsatélites en cinco poblaciones australianas. En la misma especie Xu *et al* (2001) reportan entre 0,47 a 1,00 de *Ho* en seis loci para poblaciones de Filipinas.

Sin embargo los valores de *Ho* reportados para este estudio son menores a los señalados anteriormente (Tabla 4). Al parecer este valor $Ho = 0,50 \pm 0,05$ indica un déficit de individuos heterocigotos para las poblaciones evaluadas. Similares resultados de deficiencia ha sido reportados por Wolfus *et al* (1997) en *L. vannamei*, cuya causa podría estar asociada a la presencia de de alelos nulos. De igual manera en *L. setiferus* (Ball *et al.*, 1998) y *L. vannamei* (Cruz *et al.*, 2002) se explica el déficit de heterocigotos por la presencia de alelos nulos para algunos loci.

Un alelo nulo es la ausencia de un producto genético, en este caso una banda o alelo de microsatélite, debido a la eliminación o mutación de una o varias bases, en la región de acople del iniciador en el ADN (Hoelzel, 1998). Este término también hace referencia a

la presencia problemas técnicos durante la amplificación por PCR (Ball *et al.*, 2003). Una forma de verificar la presencia de alelos nulos, es realizar pruebas genéticas en individuos emparentados para determinar si el locus cumple el modelo de segregación mendeliana (Wolfus *et al.*, 1997 y Hoelzel, 1998).

Otra posible hipótesis para justificar la reducción de homocigotos en *L. vannamei* es la presencia de cohortes reclutadas que se mueven paralelas a lo largo de la costa probablemente buscando mejores condiciones ambientales y biológicas para alimentarse y reproducirse. Los animales muestreados corresponderían a esas cohortes que tendrían un alto índice de consanguinidad. Esto en contraste con los reportes señalados por Lester (1979), Benzie (2000), Aubert y Ligthner (2000) que indican que las larvas de camarones se dispersan hasta cientos de kilómetros en el océano durante su diferenciación morfológica.

Una de las características de interés en el uso de microsatélites, es determinar los niveles de diversidad genética (Wolfus *et al.*, 1997). La diversidad en este contexto se define como la variabilidad genética dentro de una especie o población y se la cuantifica a partir del número de alelos, genotipos, heterocigocidad y frecuencias alélicas. Xu *et al* (2002) señalan que en la evaluación de la diversidad genética no solo es importante contar con un solo índice, sino la interrelación entre varias medidas de diversidad, podría dar una medida mas sensitiva.

Grandjean y Souty-Grosset (2000), explican que las poblaciones con variantes alélicas únicas y genéticamente diferenciadas deberían tener estrategias de manejo y protección especiales. En el presente trabajo se determinó que Atacames, Puerto Cayo y Puerto Bolívar tuvieron la mayor diversidad genética durante el muestreo en época fría en agosto del 2002. En cambio para la época cálida, mayo del 2003, las poblaciones con mayor diversidad genética fueron Atacames y Posorja. Resultados obtenidos por Fresneda en el 2003 usando ISSRs, destaca que individuos *L. vannamei* con mayor heterocigocidad, se hallan en los puntos mas extremos que comprende las regiones de ATA y PBL. Lo anterior indica que los puntos latitudinales extremos en Ecuador son de interés en la selección de individuos con alta diversidad genética.

El principio de Hardy-Weinberg indica que en una población en la cual no intervienen fuerzas evolutivas el número de individuos heterocigotos está relacionado con la frecuencia de los alelos en un valor $2p_{ijk}$ donde p y j corresponden a la frecuencia de los alelos presentes en la población. Si el principio de Hardy-Weinberg no se cumple, la deficiencia de heterocigotos se debe a que fuerzas evolutivas (mutación, migración, selección natural o deriva genética) están actuando sobre ese grupo de individuos.

Broker y Benzie (2000) hallan desviación en H-W en un tercio de los loci estudiados para 5 poblaciones de *P. monodon* en Australia. La principal causa de esta desviación la asoció a un reducido número de individuos muestreados. Posteriormente Xu *et al* (2001) hallan diferencias significativas en H-W para algunos loci aplicados en *P. monodon*. Estos autores sugieren que el desequilibrio era ocasionado por un déficit de heterocigotos, especialmente en los locus que presentan un mayor número de alelos. En la caracterización de microsatélites en *L. setiferus* realizado por Ball y Chapman (1998) deficiencias significativas de heterocigotos fueron encontradas en el 22,6 % de todos los loci analizados, atribuyéndolo a varios factores: presencia de alelos nulos, aneuploidía o mal acoplamiento de los iniciadores al ADN.

La implicación biológica de desviación del equilibrio Hardy-Weinberg es compleja. El modelo de panmixia indica que muestras derivadas de una misma población no deben desviarse del equilibrio Hardy-Weinberg. Desviaciones significativas indican estructura poblacional con un incremento del grado de consanguinidad de esa población producto de la reducción de variabilidad genética (Richardson, 1986). En el presente trabajo se determinaron desviaciones significativas del equilibrio Hardy-Weinberg para todos los loci evaluados al analizarlos para el total de muestras (p < 0,0001). Sin embargo los loci Lvan-54, Lvan-67, Lvan-84, Lvan-135 y Lvan-142 no presentan desviaciones significativas para H-W (p > 0,05) en algunas poblaciones (Tabla 6).

La mayor parte de la literatura en Peneidos señala que esta reducción esta asociada a la presencia de alelos nulos. En la evaluación de estos mismos loci en el programa de mejoramiento de familias de *L. vannamei* llevadas por PROMOGEN-CENAIM (Pérez y Vivanco, 2003 datos sin publicar), se encontró evidencia de alelos nulos. De acuerdo a esos resultados la disminución de la heterocigocidad en las poblaciones ecuatorianas podría ser un artefacto producto de la técnica utilizada y similar a lo encontrado por otros investigadores. Adicionalmente esto plantea la necesidad de generar nuevos microsatélites que no presenten este problema.

En el caso de los loci Lvan-159 y Lvan-160 el diseño de los primer se realizó en base a la misma secuencia depositada en el banco de secuencias del NCBI (Perez y Vivanco, 2003 datos sin publicar). Ese hecho explica que los valores de heterocigocidad para los dos loci sean similares en el presente trabajo. La información generada con estos dos loci corrobora la reproducibilidad de los datos obtenidos.

Existe interés del efecto que pueda tener la disminución de manglares sobre poblaciones silvestres de camarones. En Ecuador durante el periodo 1969-1995 el número de hectáreas declinó un 27% debido supuestamente a la acuicultura del camarón (Tobey, 1998). La degradación del manglar podría llevar a una futura pérdida de variantes alélicas y disminución de la diversidad en poblaciones ecuatorianas, debido a que estos ecosistemas estuarinos cumplen un importante papel en el desarrollo de juveniles de la especie. Los ambientes de manglar son el lugar de cría de muchas especies comerciales y constituyen el hábitat de muchas otras (plantas, aves mamíferos y anfíbios) y su destrucción también podría afectar productividad de las aguas destinadas para fines acuícolas (Tobey, 1998). El fraccionamiento del manglar podría llevar a la pérdida de poblaciones de camarón blanco producto de millones de años de evolución, adaptadas a condiciones locales especiales.

5.2. DIVERSIDAD GENÉTICA INTERPOBLACIONAL

Uno de los primeros reportes sobre diferenciación genética en poblaciones de camarones, fue realizada por Lester, (1979) en el Golfo de México con las especies *P. aztecus*, *P. doudarum* y *L. setiferus*. El promedio de los 20 loci enzimáticos revelaron un valor de G_{ST} (equivalente a F_{ST}) de 0,022, 0,015 y 0,017 para cada una de las especies descritas previamente. Estos valores fueron interpretados como el producto de la inexistencia de estructura poblacional. Sin embargo el autor no presenta valores de probabilidad estadística que respalden esas conclusiones. En el citado estudio se propuso que la razón de esa continuidad genética es la dispersión de larvas y la migración de postlarvas dentro del Golfo. Sunden y Davies (1991) realizaron un estudio similar en *L. vannamei* con muestras de las costas de Ecuador, Panamá y México, hallando poca diferenciación genética en sus 26 loci enzimáticos. Los valores de diferenciación genética son bajos (F_{ST} = 0,0027) y coinciden con los reportados por Lester (1979 y 1983). Sin embargo se destaca que la población ecuatoriana posee únicos alelos cuando se comparan con Panamá y México.

En el 2000 Aubert y Lightner, a partir de perfiles de RAPD, hacen estimaciones del análogo F_{ST} a partir del parámetro Φ_{ST} en poblaciones silvestres de *L. stylirostris* en el Golfo de California. Sus resultados indican fuerte diferenciación genética (Φ_{ST} = 0,147; P < 0,001) que serían el resultado de barreras físicas tales como corrientes internas del Golfo. Similares resultados son reportados en el trabajo de De la Rosa-Vélez (1999) pero usando loci enzimáticos, en el cual se reporta fuerte diferenciación entre las poblaciones de *L. stylirostris* (F_{ST} = 0,372) y *L. californiensis* (F_{ST} = 0,182) en el mismo sitio. La diferenciación en *L. stylirostris* es atribuida a modificación en las condiciones ambientales hacia la parte costera, la cual pudo ocasionar cambios hidrológicos y latitudinales en la parte superior e inferior del Golfo; mientras que la diferenciación en *L. californiensis* la atribuye a factores de dispersión en la parte oceánica durante el ciclo de desove.

Con el uso de microsatélites, varios estudios han reportado diferenciación genética en poblaciones de camarón en áreas extensas y con pocos loci. Brooker *et al* (2000) halla fuerte diferenciación genética en *P. monodon* en la parte oriental de Australia usando tres loci microsatélite. El valor obtenido de F_{ST} fue de 0,010 (p < 0,01). Ellos sugieren que una de estas poblaciones fue colonizada por un pequeño número de reproductores, proveniente de la costa este, cuando hubo vínculos entre mar de Indonesia, Nueva Guinea y Australia en la última glaciación.

Xu *et al* (2001) reportan estructura poblacional en cuatro zonas de Filipinas mediante seis loci microsatélites en *P. monodon* ($F_{ST} = 0,006$ P < 0,01). Estos autores sugieren que la diferenciación genética podría estar asociada con la severa pérdida del ecosistema de manglar y presencia de barreras geográficas, eventos biológicos e industrias acuícolas.

En cambio, diferenciación genética mínima se ha reportado para en *P. setiferus* durante muestreos temporales durante 4 años en varios sitios del golfo de México y Oriente de los Estados Unidos mediante microsatélites ($F_{ST} = 0,002$)(Ball *et al.*, 2003). Según estos autores, probablemente una alta cantidad de individuos adultos que migran a lo largo de la línea costera, lo cual trae como consecuencia uniformidad y continuidad en la frecuencia alélica.

El promedio del índice de diferenciación para este trabajo en todos los microsatélites fue $F_{ST} = 0,0576$. Estos resultados son consistentes con los trabajos presentados por Broker *et al* (2000) y Xu *et al* en *P. monodon* (2001) y Espinosa *et al* (2002) en *L. schimitii* usando microsatélites. Sin embargo en el trabajo desarrollado por Fresneda (2003), mediante la técnica de ISSRs con las mismas muestras correspondientes al primer muestreo agosto de 2002, no se logró detectar diferenciación genética entre los puntos muestreados ($F_{ST} = 0,034$ y 0,006 para el iniciador 861 y 862 respectivamente). De acuerdo a lo indicado por Hartl y Clark (1997) estos resultados podrían corresponder a una leve diferenciación genética entre poblaciones, pero la validación estadística no fue significativa (p = 0,231 y p = 0,345). El mismo autor sugiere que mediante esta técnica la reproducibilidad está entre un 80 y 85%, un margen de error alto si compara con los ensayos obtenidos con microsatélites, los cuales son 100% reproducibles. La técnica ISSRs usa iniciadores cortos arbitrarios que generan marcadores dominantes, diferentes a los microsatélites que

son codominantes (Bornet y Branchard 2001). Maguire *et al* (2002) compara las técnicas AFLP y microsatélites (dominantes versus codominantes), hallando que esta última tiene mayor poder en detectar mayor variación entre poblaciones (9% versus 19%). Estas diferencias en el poder discriminatorio y la reproducibilidad de la técnica podrían explicar los resultados contrastantes entre el trabajo de Fresneda (2002) y nuestros resultados.

Los resultados del AMOVA presentados en este trabajo indica una moderada diferenciación genética significativa entre las 12 colecciones ($\Phi_{ST} = 0,051 \text{ y p} = 0,001$). El porcentaje de varianza asociada a estructura entre poblaciones es del 5,4 % mientras que el 94.6 % de la varianza se debe a diferencias dentro de las poblaciones. El AMOVA para el primer muestreo realizado en época fría indica un valor de $\Phi_{ST} = 0,04$ (p = 0,001). El segundo muestreo, en época cálida dio una diferenciación $\Phi_{ST} = 0,05$ (p = 0,001). Al momento no está claro si los valores de 0,04 y 0,05 indicarían una diferenciación debido a un proceso biológico o es producto de una fluctuación estadística resultado del muestreo. Un mecanismo biológico que explique esa diferenciación, podría ser el hecho de que durante la época fría las poblaciones de camarón sobreponen sus territorios. Los resultados del AMOVA confirman la diferenciación genética entre poblaciones obtenida a partir de F_{ST} descrito anteriormente.

Trabajos previos en AMOVA mediante RAPD ha demostrado estructura en poblaciones en el Golfo de México en *L. stylirostris* ($\Phi_{ST} = 0,147$) con un 14,73% de varianza entre poblaciones, tal afirmación es sustentada por la presencia de discretas unidades de reproducción y variaciones geográficas que impiden la mezcla de los individuos (Aubert y Lightner, 2000).

El test de diferenciación en pares de población usando F_{ST} , sugiere que la máxima

diferenciación genética ocurrió entre las poblaciones del primer muestreo (época fría) y las poblaciones de ATA, PED y SCL del segundo muestreo (época cálida), todo lo anterior podría indicar variación temporal entre estas poblaciones durante los dos periodos de muestreo. Esa variación temporal podría ser un indicio de procesos migratorios en *L. vannamei* que no han sido reportados hasta el momento en la literatura científica.

Los patrones satelitales de temperatura, del océano Pacífico desde el sur de Perú, hasta Panamá (fuente IMARPE) indican que durante el primer muestreo la mayor parte de la costa ecuatoriana estaba influenciada por aguas marinas subtropicales proveniente de la corriente de Humboldt (Carrera, 1996). Las temperaturas superficiales para el mes de agosto del 2002 fueron de 23,7 ° C y salinidad de 34,12 gr/L, según datos de la estación Oceanográfica "El Pelado". Durante este mes, también se presentaron las temperaturas estacionales mas bajas con una anomalía de 0,4 en temperatura y 0,3 en salinidad, ubicándose dentro del rango normal de los promedios históricos (J. Chavarría, comunicación personal). Es posible que en esta época al menos parte de las poblaciones de camarón que se localizaban en el sur del país (Puerto Bolívar y Posorja), se hayan desplazado hacia el norte, donde la temperatura del agua es mas cálida (Manabí y Esmeraldas). Los perfiles gráficos del UPGMA para este periodo y el promedio de distancia genética entre poblaciones son menores al compararlos con el segundo muestreo. El análisis del trabajo presentado por Fresneda en 2003, muestra que durante este mismo periodo las poblaciones no se diferenciaban genéticamente y que L. vannamei presentaba un alto potencial de dispersión. Los datos genéticos parecen apuntar a que el camarón L. vannamei migra durante la temporada fría en todo el litoral ecuatoriano buscando aguas mas cálidas.

Hacia finales de mayo de 2003 la temperatura del agua de la costa del Ecuador estaba influenciada por la presencia de una gran masa cálida tropical en toda la columna, proveniente de Colombia y Panamá (corriente del Niño) con temperatura de 27,3 °C y 34,16 gr/L de salinidad, que avanzó hacia la parte sur del Ecuador (datos de la estación Oceanográfica "El Pelado"). El UPGMA para este periodo cálido revela la presencia de dos agrupamientos claros: uno constituido por los individuos de la región Puerto Cayo hasta Posorja y otro que proviene de Atacames hasta San Clemente en la parte norte de Ecuador. Además los valores de distancia genética de Nei´s entre poblaciones es mayor que el primer muestreo (D_{II} = 0,265 > D_I = 0,178).

L. vannamei es una especie que predomina en temperaturas cálidas y profundidades hasta 70 metros (Dore y Frimont, 1987). El camarón blanco podría verse afectado por el patrón de corrientes oceánicas al igual que *L. californiensis* (De la Rosa-Velez *et al.*, 2000). Movimientos migratorios debidos a movimientos de masas cálidas y frías podrían en parte explicar nuestros resultados.

La presencia de estructura poblacional plantea también interrogantes respecto a características de dispersión y etología de *L. vanamei*. El hecho de que existan diferencias entre zonas geográficas relativamente cercanas indica que el rango de dispersión de las larvas no es tan grande como en otras especies y podría corresponder a decenas de kilómetros y no a cientos como en otras especies marinas. Aubert y Ligthner (2000) plantean que el flujo de larvas silvestres en el Golfo de México para *L. stylirostris*, el cual puede estar asociado a corrientes marinas frías y baja salinidad durante primavera y verano; las larvas transportadas pueden llegar a zonas de manglar en donde se reclutan hasta juveniles y su migración coincide con el aumento en la temperatura del agua y

moderada salinidad (Primavera, 1998). Sin embargo el movimiento de larvas estaría restringido por características oceanográficas tales como la presencia de corrientes marinas internas dentro del Golfo de México. En el caso de Ecuador no existe información disponible sobre este tipo de corrientes.

Por otro lado para mantener estructura es necesario que los reproductores de una población no se crucen con individuos de otra población, lo que equivaldría a panmixia y eliminación de estructura poblacional. No existe información científica sobre la presencia de cohortes o cardúmenes de camarón blanco, pero para explicar la estructura poblacional es posible sugerir su existencia. Si existen estas cohortes los desoves deberían darse en áreas no muy extensas con ciertos niveles de sincronización y las progenies deberían levantarse hasta reproductores en forma también sincronizada. Esas cohortes probablemente podrían desovar en forma sincronizada lo cual explicaría la presencia de hembras ovadas en diferentes épocas del año en para puntos específicos de la costa ecuatoriana (Lourdes Cobos, comunicación personal). Este hecho también explicaría la estacionalidad de las actividades de los larveros y sus movimientos en busca de larva a diversos sitios de la costa en épocas específicas.

Obviamente el comportamiento de larvas y reproductores de *L. vannamei* requerirá de estudios etológicos en el ambiente marino. Esos estudios, debido al ciclo de vida de la especie y las dificultades de rastreo, serán muy difíciles. Por otro lado, como se ha demostrado en este estudio, las técnicas moleculares podrían darnos resultados interesantes del comportamiento del camarón blanco. Estudios sobre muestreos en épocas precisas del año en zonas específicas podrían ser posibles y nos ayudarían a confirmar nuestros resultados. Así mismo es necesario determinar el rango de dispersión de larvas

mediante muestreos en puntos separados pocos kilómetros, por ejemplo muestreos entre 10 a 100 km. Esto ayudaría a determinar con mayor precisión donde estarían las posibles barreras que inducen la formación de poblaciones. La existencia de una clara diferenciación jerárquica durante la época cálida indica también que los muestreos deberían hacerse durante esa época.

Nuestros resultados indican que la existencia de dos grupos genéticos diferentes en Ecuador: uno correspondiente al sur y otro al norte del país. La presencia de esos dos grupos así como subestructura en poblaciones a lo largo de la costa implica la necesidad de manejo de pesquerías cuidadoso con el fin de evitar la sobreexplotación del recurso. La eliminación de uno de estos grandes grupos o de las poblaciones correspondientes a diferentes regiones llevaría a la pérdida de procesos evolutivos que pueden haberse iniciado hace miles de años. La pérdida de poblaciones altamente adaptadas a condiciones ambientales específicas produciría resultados imprevisibles dentro de la cadena biótica en la que interviene la especie y su recuperación con animales migrantes probablemente no sería adecuada. Mayores estudios son necesarios para determinar la aplicación de vedas para la especie y su efectividad. Estos estudios están respaldados por nuestros resultados que indican la existencia real de poblaciones cuyo manejo debe ser regulado.

Por otro lado la existencia de poblaciones y el grado de variabilidad genética demostrado para diversos sitios indica la posibilidad de utilizar ese material genético para formación de poblaciones base de mejoramiento.

En este trabajo se ha demostrado que la técnica de microsatélites es una herramienta importante para determinar variabilidad genética (expresada en términos de heterocigocidad, mayor número de alelos y distancia genética) y estructura poblacional en *L. vannamei*. La presencia de diferenciación genética y estructura poblacional tiene implicaciones importantes para tanto para los programas de mejoramiento genético como para el manejo del recurso pesquero de la especie.

6. <u>CONCLUSIONES</u>

- 1. Marcadores moleculares tipo microsatélite son útiles para el estudio de estructura poblacional en *L. vannamei*.
- 2. Existe una moderada estructura poblacional en *L. vannamei* a lo largo de la costa ecuatoriana.
- La distribución de reproductores en la costa ecuatoriana varía con la época del año siendo afectada probablemente por migraciones estacionales.
- El manejo de pesquerías de *L. vannamei* deberá realizarse considerando dos grupos –norte y sur- de la costa ecuatoriana.
- Para iniciar una población base de mejoramiento hay que utilizar reproductores de diferentes sitios de la costa ecuatoriana debido a la presencia de poblaciones genéticamente diferentes.

7. <u>RECOMENDACIONES</u>

Generar nuevos microsatélites que no presenten el problema de alelos nulos.

Realizar colectas de individuos en diferentes estadíos de crecimiento entre puntos muestreo más cercanos y en diferentes épocas.

Aplicar las técnicas implementadas a muestras de zonas geográficas distantes para determinar grados de diferenciación genética en rangos geográficos más amplios.

Evaluar la transferibilidad de los microsatélites utilizados en este trabajo a otras especies de Peneidos.

Efectuar pruebas experimentales para evaluar el estado actual de las poblaciones de otras especies como *L. stylirostris*, *L. occidentalis L. californiensis* y *Palinurus spp* mediante loci microsatélites.

<u>8. BIBLIOGRAFIA</u>

- Alcivar-Warren, A., D. García., M. Faggart and C. Rich. 1994. Evaluation of genetic diversity of *Penaeus vannamei* shrimp using molecular genetic techniques. USMSFP. Review. GCRL Publication No. 1, 27-34.
- Argue, B., S. Arce., J. Lotz and S. Moss. 2002. Selective breeding of Pacific white shrimp (*Litopenaeus vannamei*) growth and resistance to Taura Syndrome Virus. Aquaculture 204: 447- 460.
- Aubert, H. and D. Lightner. 2000. Identification of genetic populations of the Pacific blue shrimp *Penaeus stylirostris* of the Gulf of California. Mexico. Marine biology 137: 875-885.
- Bagshaw, J. and M. Buckholt. 1997. A novel satellite/microsatellite in the genome of the marine shrimp, *Penaeus vannamei*. Gene 184: 211-214.
- Ball, L. and W. Chapman. 1998. Characterization of (GT)_n microsatellites from native white shrimp (*Penaeus setiferus*). Molecular Ecology 7: 1247-1263.
- Ball, A and R. Chapman. 2003. Population genetics analysis of white shrimp, *Litopenaeus setiferus*, using microsatellite genetic marker. Molecular ecology 12: 2319-2330.
- Benzie, J. Ballment, E and S, Frusher. 1993. Genetic structure of *Penaeus monodon* in
 Australia: concordant results mtDNA and allozymas. Aquaculture Research 111:
 89 Research. 31: 95-111-93
- Benzie, J. 2000. Population genetic structure of penaeid prawns. Aquaculture Research 31: 95-119.
- Broker, A. and J. Benzie. 2000. Population structure of the giant tiger prawn*Penaeus monodon* in Australian waters, determined using microsatellite markers.Marine Biology 136: 149-157.

- Brooker, A., J. Benzie., A. Blair and J. Versini. 2001. Population structure of the giant tiger prawn *Penaeus monodon* in Australian waters, determined using microsatellite markers. Marine Biology 136, 149–157.
- Carrera, L. 1996. Desarrollo y problemática ambiental del área del Golfo de Guayaquil. Comisión asesora ambiental de la presidencia de la república de Ecuador. 169-175p.
- Cruz, P., H. Mejia-Ruiz., R. Pérez-Enriquez and A. Ibarra. 2002. Isolation and characterization of microsatellites in Pacific white shrimp *Penaeus* (*Litopenaeus*) vannamei. Molecular Ecology 2: 239-241.
- Davies, G. and D. Hetzel. 2000. Integrating molecular genetics with traditional approaches for genetic improvements in aquaculture species. Aquaculture Research 31: 3-10.
- De La Rosa-Velez, J., R. Escobar., F. Correa y E. Feliz. 1999. High allozyme variation and genetic similarity of two populations of commercial penaeids, *Penaeus brevirostris* (Kingsley) and *P. vannamei* (Boone), from the Gulf of California. Aquaculture Research 30: 459-463
- Dinesh, K., W. Chan, T. Lim y V. Phang. 1995. RAPD markers in fishes: an evaluation of resolution and reproducibility. Asia Pacific Journal of Molecular Biology and Biotechnology 3(2):112-118.
- Dore, I. and C. Frimoldt. 1987. A illustrated guide to shrimp of the world. Edt Osprey books. 174-175p.
- Espinosa, G., M. Jager., E. García-Machado., Y. Borrell., N. Corona., A. Robainas and J. Deutchs 2001. Microsatellites from the white shrimp *Litopenaeus schmitti* (*Crustacea, Decapoda*). Biotecnología Aplicada 18: 232-234.

Espinosa, G., U. Bécquer., Y. Borell., J. Romo., R. Dias., J. Azanza y R. Rios.

2002. Variación genética y morfológica en poblaciones naturales y cultivadas del camarón blanco *Litopenaeus schimitti* en Cuba. I Congreso Iberoamericano Virtual de Acuicultura: 778-784.

- Excoffier, L., P. Smouse and J. Quattro. 1992. Analysis of Molecular Variance inferred from metric distances among DNA haplotypes. Application to human mitocondrial DNA restriction sites. Genetics 131:479-491.
- Fresneda, Adriana. 2003. Determinación de estructura poblacional de *Litopenaeus* vannamei mediante ISSRs a lo largo de la costa ecuatoriana. Tesis de grado.
 Escuela Superior politécnica del Ecuador. 60p.
- García, D., M. Faggart., L. Roades and A. Alcivar-Warren. 1994. Genetic diversity of cultered *Penaeus vannamei* shrimp using three molecular genetic techniques. Marine shrimp farming program. MSFP. EE.UU. 270-278p.
- García, D. y J, Benzie. 1995. RAPD markers of potential use in penaeid prawn (*Peanaeus monodon*) breeding programs. Aquaculture 130:137-144.
- Goldstein, D and C. Schlotterer. 1999. Microsatellites evolution and applications. Edt. Oxford University Press. Oxford. Great Britain. 34-65p.
- Grandejean, F. and C. Souty-Grosset. 2000. Mitochondrial DNA variation and population genetic structure of the white-clawed cryfish, *Austrapotamobius pallipes pallipes*. Conservation genetics 1:309-319.
- Hardy, O., Charbonnel, N., H. Fréville, and M. Heuertz. 2003. Microsatellite allele size: A simple test to asses their significance on genetic differentiation. Genetics 163: 1467-1482.
- Hartl, D. and A. Clark. 1997. Principles of population genetics. Sianauer Associates, Inc. Canada. 71-162p.

- Hoeltzel, A. 1998. Molecular genetic analysis of population. A practical approach Second edition. Oxford University Press. Oxford. Great Britain. 445p.
- Karp, A., I. Pand and D. Ingran. 1998. Molecular tools for screening biodiversity plants and animals. Chapman & Hall. London. 41-45p.
- Lester, L. 1979. Population genetics of penaeid shrimp from the Gulf of Mexico. Journal Heredity 70 (3): 175-180.
- Lester, L. 1983. Developing a selective breeding program for penaeid shrimp mariculture. En: Benzie, J. 2000. Population genetic structure of penaeid prawns. Aquaculture Research 31: 95-111.
- Maguire, T., R. Peakall and P. Saenger. 2002. Comparative analysis of genetic diversity in the mangrove species *Avicennia marina (Avicenniaceae)* detected by AFLPs and SSRs. En: Fresneda, Adriana. 2003. Determinación de estructura poblacional de *Litopenaus vannamei* mediante ISSRs a lo largo de la costa ecuatoriana. Tesis de grado. Escuela Superior politécnica del Ecuador. 60p.
- Marriott, F. 2003. Análisis del sector camaronero. Apuntes de Economía No. 29, Dirección de Investigaciones Económicas del Banco Central del Ecuador, Guayaquil, Ecuador. 60p.
- Miller, M. 1997. Tools For Population Genetic Analysis (TFPGA) V 1.3 A windows program for the analysis of allozyme and molecular population genetic data. University Northern. Arizona. 30p.
- Moore, S., V. Whan., G. Davies., K. Byrne., D. Hetzel and P. Niegel. 1999. The development and application of genetics markers for the Kuruma prawn *Penaeus japonicus*. Aquaculture 173: 19-32.
- Nei, M. 1973. Analysis of gene diversity in subdivided population. En : Excoffier,L., P. Smouse and Quattro. J. 1992. Analysis of Molecular Variance inferred

from metric distances among DNA haplotypes. Application to human mitocondrial DNA restriction sites. Genetics 131:479-491.

- Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.
- Newton, C. and A. Graham. 1997. PCR Introduction to biotechniques. Second Edition. Bios Scientific Publishers. New York (U.S.A). 192p.
- Peakall, R. and P. Smouse. 2001. GenAlEx V5: Genetic Analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra, Australia. <u>http://www.anu.edu.au/BoZo/GenAlEx/</u>
- Pérez, F. 1999. Generación y manipulación de la diversidad genómica en *Penaeus vannamei* para la acuacultura del Ecuador. Informe ejecutivo Proyecto BID-Fundacyt 210. Informe de actividades. Ecuador. 57p.
- Pongsomboon, S., V. Whan., S. Moore and A. Tassanakajon. 2000. Characterization of tri- and tetranucleotide microsatellites in the black tiger prawn, *Penaeus monodon*. ScienceAsia 26 : 1-8.
- Primavera, J. 1998. Mangroves as nurseries: Shrimp populations in mangrove and non mangrove habitats. Estuarine coastal and shelf science 46: 457-464.
- Rahman, M. 2000. Optimization of PCR protocol in microsatellite analysis with silver and SYBR stains. Plant molecular biology reporter 18: 339-348.
- Raymond, M and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact test and ecumenicism. Journal of Heredity 86: 248-249.
- Richardson, B., P. Baverstock and W. Adams. 1986. Allozyme electrophoresis. Academic Press Inc. 273-302p.
- Robainas, A., M. Monnerot., N. Solignac., N. Dennebouy., G. Espinosa and E. Garcia-Machado. 2002. Microsatellite loci from the pink shrimp *Farfantenaeus*
notialis (Crustacea, Decapoda). Molecular Ecology Notes. 2:344-345

- Rusell, Peter. 1992. Genetics. Thrid Edition. Harper Collins Publishers. New York. USA. 800p
- Sambrook, J., E. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY. U.S.A. Vol. 1,2,3.
- Sborodoni, V., E. Mattaeis., M. Cobolloni-Sborodoni., G. La Rosa and M. Mattoccia. 1986. Bottleneck effects and the depression of Genetic variability in hatchery stocks of *Penaeus japonicus (Crustacea, Decapoda)*. Aquaculture 57:239-251.
- Schaffer-Novelli, Yara. 1983 Importancia de los manglares y sus comunidades. Informe técnico. UNESCO-ESPOL. 14p.
- Sévigny, J., L. Savard and D. Parsons. 2000. Genetic characterization of the Nothern Shrimp *Pandalus borealis*, in the Northwest Atlantic using electrophoresis of enzymes. Journal of Northwest Atlas Fish Science 27: 161-175.
- Silva, E. and M. Russo. 2000. Techniques and statistical data analysis in molecular population genetics. Hidrobiology 420:119-135
- Sunden, S. and S. Davies. 1991. Evaluation of genetic variation in a domestic population of *Penaeus vannamei* (Boone): a comparison with three natural populations. Aquaculture 97: 131-142.
- Takezaki, N. and M. Nei. 1996. Genetic distances and reconstruction of phylogenetics trees from microsatellite DNA. Genetics 144: 389-399.
- Tobey, J., J. Clay y P. Vergne. 1998. Impactos económicos, ambientales y sociales del cultivo de camarón en Latinoamérica. Reporte de manejo costero No. 2202. Universidad Rhode Island. 56p.

- Tong, J., S. Lehnert., K. Byrne., K. Kwan and H. Chu. 2002. Development of polymorphic EST markers in *Penaeus monodon*: applications in penaeid genetics. Aquaculture 208: 69-79.
- Travis, S. 2002. Hurricane Mitch: shrimp population assessments in the Gulf of Fonseca, Honduras. USGS Open File Report 03-174, 30p.
- Tsumura, Y., K. Ohba y S. Strauss. 1996. Diversity and inheritance of Inter-simple sequence repeat polymorphisms. En: Fresneda, Adriana. 2003. Determinación de estructura poblacional de *Litopenaus vannamei* mediante ISSRs a lo largo de la costa ecuatoriana. Tesis de grado. Escuela Superior politécnica del Ecuador. 60p.
- Weir, B. and C. Cockerham. 1984. Estimating *F*-statics for the analysis of population structure. En: Excoffier, L., Smouse, P., and Quattro, J. 1992.
 Analysis of molecular variance inferred from metric distances among DNA haplotypes. Application to human mitocondrial DNA restriction sites. Genetics 131:479-491.
- Wolfus., G. García, D. and A. Alcivar-Warren, Acacia. 1997. Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs. Aquaculture 152: 35-47.
- Wuthisuthimethavee. S., L. Prajuab., V. Apichart and S. Tragoonrung. 2003.Development of microsatellite markers in black tiger shrimp (*Penaeus monodon* Fabricius). Aquaculture 224: 39-50
- Xu, Z., Dhar, A., J. Wyrzykowski, and A. Alcivar-Warren. 1999. Identification of abundant and informative microsatellites from shrimp *Penaeus monodon* genome. Genetics 30, 150–156.

Xu, Z, A. Dhar., J. Wyrzykowski., A. Alcivar-Warren and J. Primavera. 2001

Genetic diversity of wild and cultured black tiger shrimp *Penaeus monodon* in the Philippines using microsatellite. Aquaculture. 199: 13–40.

ANEXO I

IND	POBLACION								LOCUS								
		PRIME	R-54	PRIME	R-67	PRIME	ER-84	PRIME	R-135	PRIME	R-142	PRIME	R-148	PRIME	R-159	PRIME	R-160
1	ATACAMES I	132	132	272	276	304	304	248	248	210	212	220	220	174	174	220	220
2	ATACAMES I	132	132	280	280	314	314	240	264	206	210	214	220	180	188	228	228
3	ATACAMES I	132	132	252	264	312	312	240	252	212	212	0	0	180	180	0	0
4	ATACAMES I	146	146	0	0	312	320	242	242	210	210	0	0	182	182	228	228
5	ATACAMES I	146	146	252	264	0	0	240	250	210	210	Õ	0	172	172	218	218
6	ATACAMESI	132	132	264	274	304	316	238	264	200	206	212	222	0	0	238	238
7	ATACAMESI	122	132	204	276	212	312	242	252	220	228	214	214	102	182	220	228
6	ATACAMEST	132	144	254	210	200	212	242	202	220	220	214	214	104	102	220	220
8	ATACAMES I	132	144	252	252	308	312	240	204	198	206	214	224	184	184	228	228
9	ATACAMES I	132	132	250	274	304	304	240	240	210	212	0	0	0	0	0	0
10	ATACAMES I	132	144	258	270	308	308	240	262	0	0	220	220	0	0	214	220
11	ATACAMES I	132	144	310	310	0	0	240	252	212	218	216	216	184	184	218	228
12	ATACAMES I	132	146	0	0	316	316	0	0	196	210	212	222	188	188	238	238
13	ATACAMES I	132	132	0	0	0	0	240	252	206	212	0	0	184	184	230	230
14	ATACAMES I	132	146	254	310	302	312	250	254	198	214	212	218	180	188	228	228
15	ATACAMES I	132	132	252	256	312	324	252	264	206	212	214	218	170	182	218	228
16	ATACAMES I	0	0	254	278	312	320	238	238	0	0	214	214	0	0	212	212
17	ATACAMES I	132	132	252	256	302	310	240	240	206	210	0	0	0	0	228	228
18	ATACAMESI	146	146	276	276	302	314	240	264	210	210	Õ	0	188	188	234	234
10	ATACAMESI	122	1/6	254	278	214	332	240	266	210	218	0	0	100	18/	224	228
19	ATACAMEST	132	146	204	2/0	210	216	240	200	210	210	210	216	174	107	220	220
20	ATACAMEST	132	400	254	200	310	014	0	0	210	214	210	210	1/4	102	210	220
21	ATACAMES I	132	132	254	2/8	298	314	242	252	198	210	0	0	182	188	226	234
22	ATACAMES I	132	146	0	0	0	0	240	264	206	210	214	214	182	188	226	232
23	ATACAMES I	132	132	250	274	0	0	240	250	212	212	0	0	182	190	228	236
24	ATACAMES I	132	144	252	258	310	310	242	252	0	0	212	212	168	168	210	210
25	ATACAMES I	132	144	256	288	312	312	242	252	206	210	210	210	176	176	0	0
26	ATACAMES I	132	146	254	270	318	318	240	264	206	210	210	218	0	0	240	240
27	ATACAMES I	132	132	254	278	308	308	240	242	206	212	214	220	182	182	228	240
28	ATACAMES I	132	144	250	274	306	312	240	250	198	198	214	214	170	184	218	228
29	ΔΤΔCΔΜΕS Ι	0	0	276	276	306	316	240	250	210	210	210	214	174	182	218	228
30	ATACAMES I	132	144	250	284	312	320	250	254	204	210	212	220	186	186	230	230
21	ATACAMESI	122	132	256	256	212	312	240	250	206	212	210	214	166	166	212	228
22	ATACAMESI	122	132	200	200	206	306	240	264	200	212	210	219	172	172	210	218
32	ATACAMEST	132	146	230	272	306	210	240	204	204	212	210	210	1/2	100	210	210
33	ATACAMEST	132	140	274	2/4	308	312	240	250	204	212	220	220	182	100	228	204
34	ATACAMES I	132	132	252	2/8	316	316	240	264	204	212	214	214	182	190	228	228
35	ATACAMES I	144	144	236	242	314	314	242	266	196	210	216	216	172	182	216	226
36	ATACAMES I	132	144	258	310	308	308	248	248	210	216	216	220	180	188	226	236
37	ATACAMES I	132	146	234	252	0	0	240	252	200	212	210	210	188	188	236	236
38	ATACAMES I	132	146	254	276	312	318	234	242	210	220	214	218	172	180	218	226
39	ATACAMES I	132	146	240	304	0	0	240	262	210	218	210	214	180	180	226	238
40	ATACAMES I	132	146	244	250	0	0	240	264	208	220	210	214	180	190	226	226
41	ATACAMES I	132	144	260	304	0	0	0	0	206	210	212	212	182	192	228	228
42	ATACAMES	0	0	260	266	õ	0	242	248	214	214	216	216	170	186	216	230
43	ATACAMES I	Õ	0	238	304	Õ	0	0	0	0	0	0	0	0	0	0	0
13	ATACAMESI	õ	0	2/9	248	0	0	0	0	õ	0	õ	0	õ	0	õ	0
45	ATACAMESI	122	132	224	256	212	316	240	240	210	210	0	0	102	182	220	228
45	ATACAMEST	132	0	204	200	512	0	240	240	210	210	0	0	102	02	220	220
46	ATACAMEST	0	0	260	304	0	0	0	0	0	0	0	0	0	0	0	0
47	ATACAMES I	0	0	260	200	0	0	0	0	0	0	0	0	0	0	0	0
48	ATACAMES I	0	0	240	304	0	0	0	0	0	0	0	0	0	0	0	0
49	ATACAMES I	0	0	246	246	0	0	0	0	0	0	0	0	0	0	0	0
50	ATACAMES I	0	0	260	304	0	0	0	0	0	0	0	0	0	0	0	0
51	ATACAMES I	0	0	260	266	0	0	0	0	0	0	0	0	0	0	0	0
52	ATACAMES I	146	146	270	278	0	0	240	252	206	210	210	220	178	178	0	0
53	ATACAMES I	126	144	236	250	302	310	252	264	210	214	220	220	188	188	234	234
54	PEDERNALES I	0	0	236	278	306	312	240	250	0	0	0	0	176	176	0	0
55	PEDERNALES I	132	138	254	254	310	314	240	264	212	212	0	0	180	180	226	226
56		132	132	0	0	306	312	240	264	200	214	214	214	184	188	230	234
57		0	0	0	0	210	310	2/2	252	212	216	216	216	196	186	220	230
57		122	144	250	200	210	216	240	250	212	214	210	220	100	100	230	200
20	PEDERINALES I	132	400	250	300	510	014	240	200	212	214	220	220	102	102	230	230
59	PEDERNALES I	132	132	266	200	306	314	240	∠04 050	212	2 IZ	214	∠14	1/2	1/2	218	∠1ŏ
60	PEDERNALES I	144	144	276	302	300	300	242	252	212	220	0	0	180	180	0	U
61	PEDERNALES I	132	132	280	280	312	312	234	242	210	216	210	210	170	184	216	230
62	PEDERNALES I	146	146	236	250	318	318	242	252	0	0	212	212	180	188	226	234
63	PEDERNALES I	0	0	244	254	302	314	234	252	200	206	0	0	182	182	228	228
64	PEDERNALES I	132	144	274	274	296	302	234	248	206	214	0	0	180	180	228	228
65	PEDERNALES I	0	0	0	0	296	304	240	250	212	212	0	0	176	176	0	0
66	PEDERNALES I	132	132	286	286	302	306	242	252	206	212	0	0	172	180	216	216
67	PEDERNALES I	132	132	256	278	0	0	240	264	0	0	ñ	0	0	0	228	228
68		132	132	244	274	õ	õ	240	264	206	228	õ	õ	172	188	218	234
60	DEDEDNALES	122	122	200	280	200	312	240	264	200	214	0	ñ	190	189	220	224
70		132	132	200	306	212	322	240	264	200	214	0	0	100	168	220	0

Tamaño en pares de bases para cada par de alelos en cada locus microsatélite

IND	POBLACION	LOCUS									CUS								
		PRIME	R-54	PRIME	R-67	PRIME	R-84	PRIME	R-135	PRIME	R-142	PRIME	R-148	PRIME	R-159	PRIME	R-160		
71	PEDERNALES I	132	132	244	286	0	0	238	264	200	214	0	0	180	190	228	236		
72	PEDERNALES I	146	146	278	278	310	310	240	248	212	232	218	218	186	186	232	232		
73	PEDERNALES I	132	132	252	252	310	310	240	240	198	214	220	224	184	188	230	234		
74	PEDERNALES I	132	132	256	278	308	308	234	240	206	212	216	216	188	188	234	234		
75	PEDERNALES I	132	146	272	278	312	312	242	264	200	214	214	214	188	188	234	234		
76	PEDERNALES I	0	0	254	254	300	302	242	242	206	212	210	210	0	0	230	230		
77	PEDERNALES I	132	144	236	256	308	308	234	240	210	214	212	222	180	180	228	228		
78	PEDERNALES I	132	132	250	290	306	312	240	264	210	210	216	216	170	180	216	228		
79	PEDERNALES I	146	146	250	250	310	310	244	256	210	214	210	220	0	0	0	0		
80	PEDERNALES I	132	146	0	0	0	0	254	264	212	232	212	222	184	188	230	234		
81	PEDERNALES I	132	140	248	280	306	320	240	248	198	202	216	210	180	190	228	228		
82	PEDERNALES I	132	102	258	200	0	210	240	244	212	220	214	214	180	190	228	230		
03	PEDERNALES I	132	122	254	210	306	210	240	204	210	214	214	214	170	170	210	220		
04 0E	PEDERNALES I	120	132	202	306	310	306	242	204	214	214	214	216	170	182	210	210		
86		122	132	202	0	212	312	240	250	200	210	216	210	190	180	210	220		
87		0	0	238	238	312	312	240	250	198	206	212	210	182	182	228	220		
88		132	132	230	0	0	0	240	248	0	0	0	0	0	0	0	0		
89		132	132	0	0	0	Ő	0	0	0	0	0	0	0	õ	0	Ő		
90		132	144	0	0	0	Ő	0	0	0	0	0	0	0	õ	0	Ő		
91	PEDERNALES I	0	0	236	306	302	306	0	0	212	212	õ	õ	188	188	0	0		
92	PEDERNALES I	126	132	252	270	316	316	242	252	206	210	216	216	172	184	218	230		
93	PEDERNALES I	126	126	258	278	306	306	242	264	202	214	216	222	188	188	234	240		
94	PEDERNALES I	0	0	256	266	304	304	240	264	198	212	218	218	172	172	218	218		
95	PEDERNALES I	140	146	236	274	294	300	240	264	0	0	220	220	192	192	238	238		
96	SN CLEMENTE I	144	144	248	256	0	0	240	240	206	206	0	0	180	180	210	232		
97	SN CLEMENTE I	132	132	248	270	0	0	240	240	208	208	0	0	0	0	226	226		
98	SN CLEMENTE I	132	132	252	252	298	302	240	252	0	0	0	0	180	180	210	210		
99	SN CLEMENTE I	132	132	238	252	302	302	240	240	198	208	222	222	166	166	218	228		
100	SN CLEMENTE I	132	132	238	252	306	308	240	240	198	208	222	222	166	166	218	228		
101	SN CLEMENTE I	132	132	262	262	308	310	240	252	204	210	216	216	174	184	232	234		
102	SN CLEMENTE I	132	144	254	254	308	308	240	264	206	206	0	0	190	190	0	0		
103	SN CLEMENTE I	132	146	252	262	0	0	234	252	208	216	0	0	0	0	228	228		
104	SN CLEMENTE I	132	142	236	250	0	0	240	264	208	208	0	0	184	184	232	232		
105	SN CLEMENTE I	132	144	252	272	0	0	240	264	196	206	216	216	0	0	228	232		
106	SN CLEMENTE I	132	132	0	0	0	0	0	0	0	0	0	0	180	180	232	232		
107	SN CLEMENTE I	132	132	256	256	308	308	240	240	0	0	212	216	188	188	232	232		
108	SN CLEMENTE I	142	142	252	262	306	306	240	250	202	202	0	0	166	186	228	228		
109	SN CLEMENTE I	132	146	250	256	0	0	240	250	0	0	214	214	0	0	220	226		
110	SN CLEMENTE I	0	0	252	252	308	308	240	254	0	0	0	0	0	0	230	230		
111	SN CLEMENTE I	0	0	254	256	308	308	240	254	0	0	0	0	0	0	230	230		
112	SN CLEMENTE I	144	144	264	2/8	0	0	240	262	208	208	0	0	180	180	228	228		
113	SN CLEMENTE I	132	132	0	0	0	0	238	202	208	208	0	0	188	188	228	234		
114	SN CLEMENTE I	146	140	252	276	0	204	240	250	208	222	214	214	180	100	220	220		
115	SN CLEMENTE I	0	0	254	2/0	304	312	240	230	206	200	214	214	174	100	220	220		
110	SN CLEMENTE I	142	1/2	254	272	306	0	240	240	208	200	220	220	0	0	228	220		
118	SN CLEMENTE I	132	132	252	264	308	308	242	242	200	218	218	218	182	182	222	228		
119	SN CLEMENTE I	132	132	252	262	0	0	250	250	208	208	218	218	166	170	222	228		
120	SN CLEMENTE I	132	132	252	278	308	314	240	264	0	0	216	216	182	190	0	0		
121	SN CLEMENTE I	132	144	248	290	306	320	240	240	208	208	210	216	178	184	212	228		
122	SN CLEMENTE I	144	144	252	256	306	306	240	248	208	208	210	216	176	184	0	0		
123	SN CLEMENTE I	132	132	254	274	0	0	240	240	198	210	212	212	166	180	234	234		
124	SN CLEMENTE I	146	146	250	306	296	308	240	240	208	208	224	224	180	180	218	228		
125	SN CLEMENTE I	146	146	242	250	298	310	248	264	196	210	216	216	0	0	238	238		
126	SN CLEMENTE I	132	144	242	290	0	0	240	262	0	0	218	218	184	184	226	226		
127	SN CLEMENTE I	132	144	270	290	0	0	264	264	208	208	214	214	0	0	212	218		
128	SN CLEMENTE I	132	146	270	308	0	0	0	0	208	208	216	216	0	0	232	232		
129	SN CLEMENTE I	132	146	254	276	302	310	240	264	210	210	216	216	166	174	224	224		
130	SN CLEMENTE I	132	132	308	308	298	308	240	264	206	212	0	0	188	188	226	236		
131	SN CLEMENTE I	0	0	304	304	308	308	240	248	0	0	0	0	182	188	216	216		
132	SN CLEMENTE I	132	144	248	256	310	314	242	264	208	208	220	220	180	180	232	232		
133	SN CLEMENTE I	132	132	250	264	0	0	242	242	208	208	216	216	180	180	228	228		
134	SN CLEMENTE I	132	146	254	272	0	0	240	248	208	228	214	214	186	186	226	232		
135	SN CLEMENTE I	132	132	252	270	0	0	240	252	208	208	212	214	182	182	224	224		
136	SN CLEMENTE I	132	144	236	236	0	0	240	248	206	206	214	214	180	188	226	226		
137	SN CLEMENTE I	132	144	288	288	0	0	240	262	208	220	214	214	0	0	226	226		
138	SN CLEMENTE I	0	0	230	290	0	0	240	240	204	204	214	214	180	180	0	0		
139	SN CLEMENTE I	132	132	254	254	0	0	264	264	208	208	216	216	180	180	0	U		
140	SN CLEMENTE I	0	U	232	202	0	U	0	0	0	0	0	U	0	U	υ	U		

IND	POBLACION	10018															
	1002/10/011	PRIM	FR-54	PRIM	-R-67	PRIM	R-84	PRIMER-135		PRIME	R-142	PRIME	R-148	PRIME	R-159	PRIME	R-160
211	POSORJA I	132	132	252	308	314	314	240	264	0	0	0	0	194	194	0	0
212	POSORJA I	146	146	258	282	316	316	240	264	210	210	0	0	172	172	0	0
213	POSORJA I	132	146	252	278	310	310	242	262	210	210	0	0	180	180	226	226
214	POSORJA I	132	144	248	280	324	324	242	242	212	212	0	0	188	188	0	0
215	POSORJA I	132	132	280	284	310	310	0	0	210	216	0	0	190	190	0	0
216	POSORJA I	132	132	254	254	0	0	242	250	210	210	0	0	174	188	0	0
217	POSORJA I	0	0	254	254	316	316	0	0	210	210	0	0	180	180	0	0
218	POSORJA I	0	0	250	250	0	0	0	0	210	210	0	0	188	188	0	0
219	POSORJA I	0	0	256	256	318	318	0	0	0	0	0	0	188	188	0	0
220	POSORJA I	0	0	248	280	324	324	0	0	0	0	0	0	0	0	0	0
221		0	0	256	204	310	310	242	242	210	210	0	0	190	180	0	0
223	POSORIA I	0	Ő	252	284	0	0	0	0	210	0	0	0	0	0	0	0
224	POSOR IA I	132	144	278	294	310	320	242	242	õ	0	õ	0	188	188	õ	0
225	POSORJA I	132	132	256	272	316	316	240	264	210	214	Ō	0	190	190	0	0
226	POSORJA I	126	132	254	272	318	318	240	250	210	210	0	0	174	188	218	232
227	POSORJA I	0	0	252	272	312	318	242	264	0	0	0	0	180	188	226	232
228	POSORJA I	132	144	254	254	312	312	240	264	208	208	0	0	180	180	184	184
229	POSORJA I	132	132	256	280	310	310	242	264	208	208	0	0	0	0	0	0
230	POSORJA I	144	144	266	280	298	298	240	262	0	0	0	0	172	184	218	218
231	POSORJA I	0	0	238	256	312	312	242	242	210	214	0	0	174	190	218	236
232	POSORJA I	0	144	276	288	324	324	242	252	210	210	0	0	180	180	224	224
233		144	144	250	250	210	318	242	204	210	212	0	0	172	172	216	210
234	POSORIA I	132	132	250	252	310	312	240	266	204	212	0	0	172	182	0	0
236	POSOR IA I	132	132	256	256	294	312	240	262	210	210	õ	0 0	0	0	õ	0 0
237	POSORJA I	146	146	250	262	302	302	0	0	208	208	õ	0	184	184	228	228
238	POSORJA I	0	0	254	274	310	310	240	250	200	212	0	0	182	182	0	0
239	POSORJA I	132	146	0	0	0	0	240	240	208	208	0	0	168	168	0	0
240	POSORJA I	146	146	0	0	0	0	250	250	204	214	0	0	174	182	0	0
241	POSORJA I	0	0	0	0	0	0	240	252	208	208	0	0	180	184	0	0
242	POSORJA I	0	0	0	0	0	0	238	252	0	0	0	0	172	182	0	0
243	POSORJA I	0	0	276	300	312	318	240	252	210	210	0	0	188	188	204	226
244	POSORJA I	144	144	254	2/6	0	0	0	0	210	210	0	0	182	182	194	194
245	POSORJA I	122	122	280	204	316	216	242	242	212	220	0	0	100	100	204	204
240	POSORJA I	132	132	250	230	310	310	240	204	212	220	0	0	182	182	220	0
248	PTO BOLIVAR I	0	0	252	282	304	318	244	244	210	228	0	0	184	184	218	218
249	PTO BOLIVAR I	132	146	240	276	302	308	0	0	210	210	212	218	174	174	228	228
250	PTO BOLIVAR I	130	130	248	274	0	0	240	264	210	210	0	0	0	0	0	0
251	PTO BOLIVAR I	0	0	246	246	310	310	240	240	210	226	0	0	166	166	208	212
252	PTO BOLIVAR I	132	132	0	0	310	310	0	0	212	212	0	0	170	170	214	216
253	PTO BOLIVAR I	126	126	248	272	0	0	0	0	210	210	0	0	178	192	222	232
254	PTO BOLIVAR I	132	132	252	258	0	0	240	240	200	212	0	0	184	184	226	226
255	PTO BOLIVAR I	132	132	248	248	0	0	240	250	214	214	0	0	172	184	216	228
256	PTO BOLIVAR I	132	132	250	2/4	310	310	240	240	0	0	214	214	184	190	0	226
250		132	0	232	240	312	0	0	0	212	212	0	0	001	0	210	220
250		132	132	246	304	304	304	0	0	210	212	212	212	172	172	226	226
260	PTO BOLIVAR I	144	144	272	304	308	308	244	244	0	0	0	0	0	0	218	218
261	PTO BOLIVAR I	0	0	250	250	0	0	0	0	206	212	214	214	174	174	218	226
262	PTO BOLIVAR I	0	0	232	254	312	312	0	0	210	210	212	214	0	0	0	0
263	PTO BOLIVAR I	132	146	248	282	0	0	240	248	0	0	222	222	0	0	218	218
264	PTO BOLIVAR I	146	146	252	262	0	0	240	240	212	212	212	212	176	184	214	232
265	PTO BOLIVAR I	0	0	248	262	0	0	240	250	0	0	0	0	0	0	216	216
266	PTO BOLIVAR I	132	132	254	308	0	0	0	0	210	228	0	0	170	192	214	218
267	PTO BOLIVAR I	132	132	252	252	312	312	240	240	0	0	222	222	182	182	214	228
268	PTO BOLIVAR	132	144	248	2/4	306	308 202	240	202	206	212	216	∠16 210	170	1/0	228	∠28 220
269		132	132	250	200	302	0	240	240	21U 196	212	∠1ŏ 219	∠10 218	170	184	228	220 0
270		126	146	230	248	316	322	252	252	206	206	210 212	220	184	184	219	228
272	PTO BOLIVAR I	132	132	234	250	298	302	240	240	212	212	212	218	184	184	228	228
273	PTO BOLIVAR I	132	142	248	248	0	0	238	242	208	212	210	216	184	184	218	228
274	PTO BOLIVAR I	132	142	248	248	306	306	238	242	0	0	216	218	192	192	218	234
275	PTO BOLIVAR I	132	146	254	278	304	304	0	0	206	210	214	214	176	192	218	218
276	PTO BOLIVAR I	0	0	0	0	0	0	240	240	206	210	220	220	0	0	226	226
277	PTO BOLIVAR I	134	144	262	262	312	312	240	240	214	216	0	0	0	0	0	0
278	PTO BOLIVAR I	132	132	232	232	306	306	0	0	200	210	216	216	172	172	216	216
279	PTO BOLIVAR I	132	132	252	252	310	314	240	240	200	208	0	0	192	192	232	240
280	PTO BOLIVAR I	132	132	234	∠50	312	312	240	∠40	204	212	214	∠14	190	190	228	228

IND	POBLACION																
		PRIME	R-54	PRIMER-67		PRIMER-84		PRIME	R-135	PRIME	R-142	PRIME	R-148	PRIME	R-159	PRIME	R-160
281	PTO BOLIVAR I	142	142	240	250	0	0	240	240	204	210	0	0	192	192	212	212
282	PTO BOLIVAR I	132	132	252	260	0	0	240	240	208	208	214	214	184	184	230	232
283	PTO BOLIVAR I	132	144	250	250	308	308	240	264	204	220	212	218	172	172	226	226
284	PTO BOLIVAR I	0	124	252	252	320	320	238	242	198	212	210	216	184	184	216	216
285	PTO BOLIVAR I	134	134	246	208	314	314	238	238	208	200	214	218	166	184	216	210
287		0	0	200	280	306	0	238	238	198	200	214	214	174	174	216	220
288	PTO BOLIVAR I	134	134	246	246	296	304	238	238	0	0	0	0	180	180	226	226
289	PTO BOLIVAR I	128	134	234	246	308	316	0	0	õ	0	õ	0	180	180	218	228
290	PTO BOLIVAR I	130	146	234	234	312	312	240	240	204	204	0	0	0	0	228	228
291	PTO BOLIVAR I	132	132	250	250	0	0	240	248	210	212	214	214	0	0	218	228
292	PTO BOLIVAR I	132	144	248	276	324	324	252	252	208	210	0	0	0	0	0	0
293	PTO BOLIVAR I	0	0	246	274	0	0	234	240	198	210	0	0	0	0	234	234
294	PTO BOLIVAR I	132	132	268	268	302	312	240	250	0	0	214	214	170	184	228	228
295	ATACAMES II	132	146	298	310	312	312	240	264	200	210	0	0	180	180	228	228
296		132	140	290	290	312	312	238	252	208	220	222	222	166	180	212	220
297		132	144	274	274	308	316	244	232	212	230	216	210	100	186	210	220
299	ATACAMES II	144	144	250	294	0	0	236	244	214	212	0	0	180	180	0	0
300	ATACAMES II	132	144	262	266	306	316	244	256	212	212	214	220	184	184	218	218
301	ATACAMES II	132	132	236	236	318	322	244	266	0	0	212	212	184	184	214	228
302	ATACAMES II	132	132	250	308	0	0	244	244	214	232	214	220	0	0	228	228
303	ATACAMES II	132	142	236	254	316	324	246	254	0	0	214	214	170	170	228	228
304	ATACAMES II	146	146	248	310	306	306	244	256	214	214	220	220	168	180	230	232
305	ATACAMES II	132	132	254	254	304	310	244	266	208	214	214	214	176	176	228	228
306	ATACAMES II	132	132	252	278	308	316	244	244	214	214	0	0	176	180	0	0
307	ATACAMES II	132	140	252	2/4	302	324	244	208	200	214	214	214	170	100	0	224
308		132	132	200	230	302	322	244	268	212	212	214	214	1/8	0	224	224
310		146	146	0	0	314	314	244	266	208	214	0	0	180	180	0	0
311	ATACAMES II	132	142	252	284	320	320	244	266	212	212	214	214	178	178	232	232
312	ATACAMES II	132	132	236	236	302	306	266	266	0	0	212	212	178	178	222	226
313	ATACAMES II	132	132	252	274	312	312	244	266	208	212	0	0	170	170	238	238
314	ATACAMES II	132	132	292	306	308	316	244	268	216	216	212	216	182	182	228	228
315	ATACAMES II	132	146	248	248	306	306	244	252	208	208	210	214	166	188	220	220
316	ATACAMES II	132	132	254	254	310	314	242	264	0	0	218	218	0	0	212	226
317	ATACAMES II	132	146	250	250	316	316	242	252	208	216	216	222	182	182	216	216
318		130	140	254	202	200	322	242	200	214	214	218	210	182	102	218	220
320		132	146	250	272	308	314	244	0	208	230	214	214	168	180	230	230
321	ATACAMES II	132	146	0	0	0	0	244	266	0	0	0	0	180	180	228	228
322	ATACAMES II	132	144	266	266	308	324	244	252	204	216	Ō	0	174	174	0	0
323	ATACAMES II	132	146	250	254	0	0	244	254	214	214	0	0	186	186	0	0
324	ATACAMES II	132	132	0	0	0	0	244	264	214	214	0	0	180	180	0	0
325	ATACAMES II	0	0	0	0	0	0	244	266	0	0	0	0	190	190	228	232
326	ATACAMES II	144	144	264	264	298	298	242	242	0	0	218	218	186	186	224	224
327	ATACAMES II	132	132	254	2/4	304	312	242	252	208	214	214	222	172	1/2	218	230
320		132	146	250	202	304	308	240	240	214	222	212	210	164	168	216	216
330	ATACAMES II	132	132	250	254	308	308	0	0	206	212	0	0	186	186	0	0
331	ATACAMES II	132	146	270	270	308	324	242	264	212	212	218	218	174	180	218	232
332	ATACAMES II	132	144	294	294	302	308	0	0	208	212	214	214	172	182	228	228
333	ATACAMES II	132	146	250	270	0	0	244	268	0	0	0	0	182	182	218	228
334	ATACAMES II	132	132	252	252	308	316	242	250	212	212	212	218	184	184	216	226
335	ATACAMES II	132	132	0	0	300	316	234	242	204	204	214	214	194	194	218	232
336	ATACAMES II	132	132	282	282	310	316	238	266	212	212	218	218	174	176	216	216
33/ 220	ATACAMES II	132	144 144	0	0	306	318 306	238	250 262	0	U n	214	∠14 ∩	0	U n	208	226 0
330		132	0	0	0	300	316	250	202	0	0	0	0	0	0	0	0
340	ATACAMES II	0	õ	0	0	0	0	236	244	0	0	0	0	0	0	0	0
341	ATACAMES II	130	144	272	292	308	312	242	264	202	212	214	214	178	178	232	232
342	ATACAMES II	0	0	0	0	0	0	238	250	0	0	0	0	0	0	0	0
343	ATACAMES II	132	132	236	236	0	0	242	264	208	212	0	0	170	170	0	0
344	ATACAMES II	132	132	268	268	308	322	244	244	214	214	212	212	180	186	0	0
345	ATACAMES II	132	146	284	284	304	306	236	244	214	214	216	216	0	0	0	0
346	ATACAMES II	130	132	236	276	312	312	244	244	214	214	216	216	176	180	0	0
347	PEDERNALES II	144	144 122	248	274	0	U 316	246	252	208	214	0	0 220	186	186 0	220	220
340 340	PEDERINALES II	132	132	0	0	310	318	242	200	212	0	220	220	174	182	220	0
350	PEDERNALES II	132	132	248	266	308	312	244	252	0	Õ	222	222	172	172	0	Ő

IND	POBLACION	2001															
1110	TODEACIÓN	PRIMER-54		PRIMER-67		PRIMER-84		PRIME	R-135	PRIME	R-142	PRIME	R-148	PRIME	R-159	PRIME	R-160
351	PEDERNALES II	146	146	236	254	312	322	242	246	216	216	206	216	170	170	220	242
352	PEDERNALES II	132	144	250	268	314	320	244	244	212	212	220	220	170	182	220	230
353	PEDERNALES II	126	142	236	252	314	320	244	244	214	214	212	212	186	186	220	232
354	PEDERNALES II	0	0	252	252	302	310	236	244	0	0	0	0	172	184	222	222
355	PEDERNALES II	0	0	254	284	0	0	244	256	212	212	214	222	176	176	218	230
356	PEDERNALES II	146	146	248	254	314	314	244	266	214	214	216	216	182	182	234	234
357	PEDERNALES II	0	0	252	252	312	312	244	268	200	212	216	216	176	186	0	0
358	PEDERNALES II	132	132	246	254	318	318	242	242	212	216	0	0	188	190	230	230
359	PEDERNALES II	146	146	236	274	302	320	244	266	0	0	214	214	182	182	222	222
360	PEDERNALES II	132	132	0	0	318	318	244	206	214	214	212	224	184	184	230	230
361	PEDERNALES II	132	144	0	0	0	212	244	206	208	212	222	222	0	0	222	232
262	PEDERNALES II	132	140	254	262	210	310	242	200	212	212	220	220	100	188	222	232
364	PEDERINALES II	146	146	250	202	212	318	250	266	208	208	220	210	0	0	234	234
365	PEDERNALES II	132	132	252	308	316	316	240	266	208	212	210	0	182	182	234	0
366	PEDERNALES II	132	146	248	288	0	0	0	0	212	212	204	222	0	0	230	236
367	PEDERNALES II	132	144	300	300	306	306	0	0	0	0	214	214	168	168	242	242
368	PEDERNALES II	132	132	248	252	314	320	244	262	0	0	214	214	180	190	214	236
369	PEDERNALES II	146	146	246	292	0	0	244	254	214	214	218	222	172	172	232	232
370	PEDERNALES II	146	146	248	306	312	316	0	0	214	222	220	220	174	182	228	236
371	PEDERNALES II	0	0	250	262	0	0	244	266	0	0	210	220	190	190	222	230
372	PEDERNALES II	146	146	248	276	312	312	0	0	212	212	216	216	170	170	236	236
373	PEDERNALES II	126	132	242	250	308	308	244	260	212	220	212	212	0	0	232	232
374	PEDERNALES II	0	0	254	254	306	306	244	266	212	212	0	0	0	0	224	230
375	PEDERNALES II	132	132	252	252	0	0	0	0	212	220	212	212	0	0	234	242
376	PEDERNALES II	126	132	270	270	304	310	246	254	214	214	212	212	168	168	222	230
377	PEDERNALES II	146	140	252	252	314	314	244	200	206	214	216	210	1/6	190	214	214
370	PEDERINALES II	122	132	276	200	212	312	240	200	212	210	204	210	001	0	222	236
380	PEDERNALES II	146	146	252	262	312	312	268	268	0	0	216	224	180	188	0	0
381	PEDERNALES II	0	0	254	254	298	312	0	0	ő	0 0	208	216	182	182	234	234
382	PEDERNALES II	132	142	246	276	312	312	246	270	õ	0	0	0	0	0	230	230
383	PEDERNALES II	132	132	250	254	0	0	248	270	0	0	204	212	182	182	230	238
384	PEDERNALES II	0	0	0	0	298	308	0	0	0	0	210	210	184	184	230	230
385	PEDERNALES II	0	0	0	0	306	306	0	0	0	0	0	0	0	0	230	230
386	PEDERNALES II	132	144	0	0	302	310	0	0	0	0	204	204	0	0	0	0
387	PEDERNALES II	126	144	0	0	308	312	0	0	0	0	208	208	182	182	240	240
388	PEDERNALES II	0	0	0	0	298	298	0	0	0	0	0	0	172	172	228	228
389	PEDERNALES II	0	0	0	0	320	324	0	0	0	0	0	0	0	0	218	218
390	PEDERNALES II	0	0	248	248	298	298	244	254	214	214	218	218	170	180	232	232
391	PEDERNALES II	132	140	250	200	306	312	242	200	212	210	216	224	172	1/2	232	238
392	PEDERNALES II	132	146	240	2/18	212	318	244	200	212	210	210	210	100	100	220	244
301	PEDERINALES II	140	132	240	240	210	310	244	256	202	200	210	206	172	172	220	220
395	SN CLEMENTE II	132	132	250	250	304	304	246	256	216	216	214	214	182	182	230	230
396	SN CLEMENTE II	132	146	248	248	316	316	244	256	210	214	220	220	184	184	0	0
397	SN CLEMENTE II	144	144	0	0	308	314	244	270	212	220	218	218	182	182	228	228
398	SN CLEMENTE II	132	132	248	272	294	304	254	268	212	212	214	218	174	174	222	222
399	SN CLEMENTE II	132	132	238	248	0	0	246	256	212	212	216	220	186	186	232	232
400	SN CLEMENTE II	132	132	236	268	0	0	0	0	212	216	212	220	0	0	232	232
401	SN CLEMENTE II	132	146	0	0	310	328	244	270	212	212	214	218	184	184	216	220
402	SN CLEMENTE II	132	146	264	276	312	324	254	254	212	214	220	220	170	174	220	230
403	SN CLEMENTE II	132	132	250	284	304	318	244	270	212	212	214	214	174	182	230	230
404	SN CLEMENTE II	132	144	250	294	316	324	0	0	212	218	0	0	182	182	228	228
405	SN CLEMENTE II	132	1/12	250	∠04 272	310	310	242	242	198	212	214	∠14 210	182	102	224	232
406 407	SN CLEMENTE II	132	1/10	236	212	306	014 0	246 242	200	212	220	210	∠10 216	172	18/	220	228
402	SN CLEMENTE II	132	132	230	274	312	312	242	270	206	216	210	214	184	184	230 214	210
409	SN CLEMENTE II	132	132	278	310	0	0	246	258	212	224	216	216	168	168	214	214
410	SN CLEMENTE II	132	144	268	268	ñ	õ	0	0	212	230	216	216	168	168	0	0
411	SN CLEMENTE II	132	132	248	254	310	320	244	270	200	212	216	224	192	192	ő	0
412	SN CLEMENTE II	132	132	248	274	298	308	246	266	214	214	0	0	182	182	õ	0
413	SN CLEMENTE II	132	146	252	252	306	306	0	0	206	216	214	214	184	184	0	0
414	SN CLEMENTE II	132	132	248	268	304	304	0	0	202	212	216	220	0	0	232	232
415	SN CLEMENTE II	132	132	248	308	0	0	246	270	214	214	218	218	186	186	230	230
416	SN CLEMENTE II	132	146	248	248	0	0	0	0	206	214	216	216	184	184	214	236
417	SN CLEMENTE II	146	146	250	272	308	308	244	254	212	212	214	214	182	182	230	230
418	SN CLEMENTE II	132	132	284	292	314	324	258	258	212	212	0	0	170	190	0	0
419	SN CLEMENTE II	132	132	252	252	304	310	246	258	212	212	218	218	178	190	224	230
420	SN CLEMENTE II	132	144	248	202	302	300	246	200	212	212	216	210	0	U	224	230

IND	POBLACION		LOCUS														
	_	PRIME	8-54	PRIME	R-67	PRIME	R-84	PRIME	R-135	PRIME	R-142	PRIME	R-148	PRIME	R-159	PRIME	R-160
421	SN CLEMENTE II	132	132	248	272	302	308	0	0	200	212	214	220	178	182	230	230
422	SN CLEMENTE II	146	146	248	276	298	312	244	270	210	210	216	216	178	184	232	232
423	SN CLEMENTE II	132	132	248	274	308	308	236	244	214	232	216	216	182	182	232	232
424	SN CLEMENTE II	132	146	250	250	316	316	246	270	0	0	218	218	184	184	214	228
425	SN CLEMENTE II	132	132	248	254	306	314	0	0	210	210	0	220	186	160	220	230
420	SN CLEMENTE II	132	140	250	212	208	308	242	254	206	210	214	220	100	100	212	212
421	SN CLEMENTE II	132	146	202	0	212	312	246	258	212	212	219	218	100	190	226	236
420	SN CLEMENTE II	132	132	262	268	306	310	240	252	0	0	216	216	168	168	230	0
430	SN CLEMENTE II	0	0	0	0	0	0	244	254	212	212	0	0	178	178	0	0
431	SN CLEMENTE II	132	146	250	250	308	308	0	0	206	214	õ	0	184	184	230	230
432	SN CLEMENTE II	132	146	0	0	308	312	õ	0	206	212	218	224	190	190	236	236
433	SN CLEMENTE II	132	146	252	288	314	314	246	270	200	206	214	220	170	186	0	0
434	SN CLEMENTE II	132	146	252	276	314	314	246	270	206	214	0	0	182	182	230	230
435	SN CLEMENTE II	132	132	234	254	0	0	0	0	206	212	0	0	182	182	0	0
436	PTO CAYO I	132	146	304	304	312	320	240	252	0	0	214	214	180	180	0	0
437	PTO CAYO II	132	146	0	0	310	310	238	248	0	0	210	210	190	190	232	232
438	PTO CAYO II	132	132	0	0	312	326	240	262	0	0	214	214	174	174	218	218
439	PTO CAYO II	132	132	278	310	0	0	240	246	198	206	212	212	182	182	224	224
440	PTO CAYO II	132	132	236	266	312	320	240	248	212	216	212	212	184	190	226	232
441		132	132	256	256	0	0	240	262	210	228	212	216	1/4	1/4	218	218
442		132	132	254	294	312	314	240	252	214	214	212	212	0	100	236	230
443		132	142	252	200	310	220	240	202	210	214	218	210	170	102	216	220
444		132	132	0	0	209	320	240	202	206	210	210	212	100	190	212	202
445		132	132	0	0	0	0	242	264	210	210	210	210	190	190	232	232
447		132	132	0	0	318	318	240	262	206	210	214	218	190	190	230	230
448	PTO CAYO II	132	146	252	256	312	312	240	262	210	210	214	214	184	184	226	238
449	PTO CAYO II	0	0	0	0	310	318	0	0	206	214	214	214	188	188	228	228
450	PTO CAYO II	132	146	0	0	312	318	242	266	198	206	212	212	184	184	226	226
451	PTO CAYO II	132	144	0	0	312	316	240	264	206	210	216	216	176	182	220	226
452	PTO CAYO II	132	144	0	0	320	326	240	240	210	210	214	214	182	182	226	226
453	PTO CAYO II	132	144	0	0	318	318	238	260	208	212	214	214	190	190	232	232
454	PTO CAYO II	132	132	0	0	314	318	238	260	206	210	212	218	190	190	232	232
455	PTO CAYO II	132	132	0	0	308	314	240	250	200	210	212	216	170	182	212	226
456	PTO CAYO II	132	132	0	0	300	310	240	250	198	204	0	0	184	184	226	226
457	PTO CAYO II	132	132	0	0	310	320	240	262	212	216	0	0	180	192	220	234
458	PTO CAYO II	132	132	0	0	316	330	240	262	214	214	0	0	172	172	216	216
459	PTO CAYO II	130	134	252	266	312	312	244	248	210	210	214	214	178	178	220	232
460	PTO CAYO II	132	132	0	0	0	0	234	240	214	224	0	0	176	186	218	228
461		146	140	2/4	2/4	304	310	238	250	212	222	218	218	170	170	0	220
462		140	140	232	200	312	316	240	262	210	214	210	210	104	1/0	220	220
403		140	142	2/0	0	314	320	242	0	204	210	210	210	194	182	226	220
465		132	132	254	278	314	320	240	252	204	210	214	214	184	184	226	226
466	PTO CAYO II	132	132	254	290	312	318	240	262	210	210	210	214	170	170	212	232
467	POSORJA II	132	132	244	272	310	310	238	260	212	220	214	214	188	188	234	242
468	POSORJA II	132	146	244	298	0	0	240	250	212	212	212	212	172	184	220	232
469	POSORJA II	132	146	248	258	322	328	0	0	206	212	0	0	168	170	0	0
470	POSORJA II	132	132	244	266	302	302	238	262	206	210	216	216	180	188	228	234
471	POSORJA II	132	132	244	270	0	0	0	0	208	212	212	220	172	188	218	232
472	POSORJA II	132	146	248	248	302	302	0	0	206	210	214	214	180	188	228	234
473	POSORJA II	132	146	230	296	314	314	238	258	210	232	214	224	180	180	226	226
474	POSORJA II	126	144	0	0	0	0	0	0	200	206	0	0	0	0	180	202
475	POSORJA II	132	144	244	292	0	0	240	262	206	212	218	218	182	182	228	228
476	POSORJA II	132	132	0	0	302	302	238	258	206	212	218	218	180	188	228	234
477	POSORJA II	144	144	244	244	302	310	238	258	210	210	216	222	0	0	228	228
478	POSORJA II	130	130	246	250	302	302	232	2/0	212	212	216	210	172	184	218	230
4/9	PUSURJA II	146	140	266	274	304	0	240	202	198	190	210	210	180	100	228	220
-+0U /101		122	132	230	230	308	314	230	258	212	212	210	216	100	188	220	234
482	POSORJA II	132	144	230	230	306	306	230 240	262	210	212	220	220	184	184	234	230
483		132	132	242	264	306	312	240	0	198	206	212	220	182	182	228	228
484	POSOR IA II	144	144	246	248	300	306	248	248	210	228	210	216	174	174	220	220
485	POSOR IA II	132	132	250	284	312	312	238	250	212	228	204	212	180	180	228	228
486	POSOR IA II	132	132	230	248	310	310	238	258	0	0	214	218	174	188	220	234
487	POSORJA II	132	146	244	274	0	0	238	260	210	228	214	214	180	180	228	228
488	POSORJA II	132	132	244	248	300	306	0	0	206	206	216	216	0	0	0	0
489	POSORJA II	142	142	0	0	0	0	0	0	198	198	0	0	148	148	198	204
490	POSORJA II	132	132	244	250	308	312	238	250	206	212	214	214	172	172	218	218

		91001															
IND	PUBLACIUN	DDIL	D F 4	DDILA	D 67	DDIL	D 0 4	DDIN	LO	CUS	DDUAE	D 1 40	DDILAE	DDIMED_150		D 1 CO	
40.1	DOCOD IA II	PRIME	-R-54	PRIME	R-67	PRIME	-R-84	PRIME	R-135	PRIME	R-142	PRIME	R-148	PRIME	R-159	PRIME	R-160
491	POSORJA II	128	132	248	248	306	306	242	262	206	210	212	212	180	180	228	228
492	POSORJA II	132	144	296	290	310	310	0	250	208	212	214	214	188	100	236	230
493	POSORJA II	132	132	0	0	304	304	238	250	210	210	214	216	182	182	230	230
494	POSORJA II	132	132	266	2/2	314	314	238	238	206	212	214	222	182	188	228	234
495	POSORJA II	132	142	250	250	0	0	238	258	0	0	212	212	194	194	240	240
496	POSORJA II	132	132	266	200	0	0	236	262	206	214	220	220	170	188	218	234
497	POSORJA II	146	140	230	300	0	0	238	258	208	220	216	210	172	1/2	220	238
498	POSORJA II	144	144	0	0	298	298	238	200	206	212	214	214	180	180	230	230
499	POSORJA II	144	144	246	208	314	320	238	258	208	208	212	224	180	180	220	220
500	POSORJA II	132	142	244	268	312	312	238	262	210	232	214	224	188	188	236	236
501	POSORJA II	132	132	258	270	304	304	240	250	0	0	214	222	170	186	218	232
502	POSORJA II	132	146	250	268	304	310	0	0	0	0	218	218	182	182	230	230
503	POSORJA II	146	146	244	206	310	310	238	248	206	210	218	224	180	188	228	228
504	POSORJA II	132	144	252	252	302	312	0	0	204	210	214	214	180	180	228	236
505	POSORJA II	132	132	230	250	308	314	238	260	208	218	214	214	174	188	220	234
506	POSORJA II	142	142	0	0	0	0	248	248	200	200	0	0	152	152	200	208
507	POSORJA II	144	144	0	0	0	0	248	262	198	204	0	0	154	1/0	228	228
508	POSORJA II	132	132	244	270	302	302	248	262	200	210	214	214	182	182	202	202
509	POSORJA II	132	142	244	250	306	306	0	0	210	210	218	218	180	180	228	228
510	POSORJA II	132	132	266	272	308	308	238	258	206	210	214	220	170	170	218	218
511	POSORJA II	144	144	0	0	0	0	0	0	198	208	0	0	152	152	200	210
512	POSORJA II	144	144	244	276	0	0	0	0	196	200	0	0	150	150	200	206
513	POSORJA II	132	132	252	296	0	0	238	248	206	212	216	218	180	180	230	230
514	BALLENITA II	138	144	268	288	0	0	242	264	212	214	0	0	0	0	0	0
515	BALLENITA II	132	132	248	270	312	312	240	252	210	212	0	0	174	182	0	0
516	BALLENITA II	146	146	248	272	0	0	238	262	212	214	0	0	170	170	0	0
517	BALLENITA II	132	146	246	272	314	314	238	262	212	212	212	212	172	182	218	228
518	BALLENITA II	132	146	246	250	308	312	0	0	0	0	210	220	174	188	218	232
519	BALLENITA II	146	146	268	278	318	318	242	262	212	212	214	220	0	0	218	230
520	BALLENITA II	132	132	260	306	310	310	242	262	202	206	210	222	180	180	226	226
521	BALLENITA II	132	132	234	250	0	0	240	262	214	214	216	216	188	188	234	234
522	BALLENITA II	132	132	246	306	0	0	0	0	212	216	218	218	182	182	228	228
523	BALLENITA II	132	132	248	280	0	0	242	262	200	212	212	216	0	0	240	240
524	BALLENITA II	132	132	268	306	0	0	240	262	208	212	214	214	178	178	222	222
525	BALLENITA II	146	146	260	268	0	0	240	262	214	214	210	210	166	188	212	234
526	BALLENITA II	132	144	234	274	0	0	240	262	0	0	216	216	182	182	228	228
527	BALLENITA II	146	146	246	252	296	304	248	250	212	216	210	210	188	188	232	232
528	BALLENITA II	132	132	268	276	0	0	240	262	206	212	214	214	170	170	218	218
529	BALLENITA II	132	132	252	270	306	310	240	266	212	212	212	216	174	184	218	228
530	BALLENITA II	132	132	234	246	304	310	240	262	212	216	216	218	184	184	228	228
531	BALLENITA II	132	132	306	306	308	308	240	248	212	214	216	216	182	182	226	226
532	BALLENITA II	132	132	248	268	310	320	242	248	214	214	214	214	0	0	0	0
533	BALLENITA II	146	146	240	240	302	308	240	262	212	216	214	214	188	188	234	234
534	BALLENITA II	132	146	248	270	310	310	240	250	212	212	218	218	174	184	218	228
535	BALLENITA II	132	132	250	250	308	308	240	250	212	232	216	216	180	180	228	228
536	BALLENITA II	132	132	246	246	306	306	242	262	206	212	218	218	182	188	226	232
537	BALLENITA II	146	146	248	254	312	312	240	262	212	216	214	214	182	182	228	228
538	BALLENITA II	132	146	248	302	314	314	0	0	202	214	218	218	168	168	214	214
539	BALLENITA II	146	146	232	254	310	310	242	262	198	214	212	212	188	188	232	232
540	BALLENITA II	144	144	246	274	304	308	240	252	206	214	218	218	174	174	218	218
541	BALLENITA II	132	146	250	250	306	312	242	262	212	212	212	218	182	182	228	228
542	BALLENITA II	132	144	254	282	308	308	240	264	214	214	210	216	174	182	218	228
543	BALLENITA II	132	132	250	254	306	306	240	250	0	0	212	220	182	182	228	228
544	BALLENITA II	132	146	246	246	310	310	242	248	200	212	222	222	180	186	226	226
545	BALLENITA II	132	146	248	248	308	308	242	250	202	214	212	212	182	182	228	228
546	BALLENITA II	132	146	232	270	308	308	240	262	200	212	212	212	182	182	226	226
547	BALLENITA II	132	132	248	282	304	304	240	260	202	206	210	214	168	184	212	228
548	BALLENITA II	132	132	248	254	306	314	242	262	212	226	216	216	170	178	216	224
549	BALLENITA II	132	132	252	260	306	306	242	250	206	216	214	214	0	0	0	0
550	BALLENITA II	132	132	0	0	0	0	0	0	208	212	220	220	184	184	228	228
551	BALLENITA II	132	144	248	250	310	310	240	248	212	212	214	218	0	0	0	0
552	BALLENITA II	130	130	250	250	294	308	240	260	206	206	212	216	188	188	234	234
553	BALLENITA II	130	142	252	274	312	312	240	260	200	200	208	212	166	166	212	212
554	BALLENITA II	130	130	246	268	308	308	240	262	202	214	210	210	180	180	0	0
555	BALLENITA II	126	132	234	268	0	0	0	0	0	0	0	0	174	174	218	218
556	BALLENITA II	132	144	248	248	308	308	240	250	212	220	0	0	188	188	234	234
557	BALLENITA II	132	144	270	270	0	0	240	260	212	212	0	0	188	188	234	234
558	BALLENITA II	132	132	260	264	0	0	240	250	198	212	0	0	0	0	232	232
559	BALLENITA II	132	132	268	268	306	310	240	262	206	212	0	0	170	170	214	214
560	BALLENITA II	132	144	252	274	314	320	240	262	212	212	0	0	176	176	0	0

ANEXO II.

Temperatura superficial del Océano Pacífico durante el mes de agosto de 2002 (primer

Temperatura superficial del Océano Pacífico durante el mes de Mayo de 2003 (segundo

muestreo)

muestreo)

