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Abstract Alcyonacea are sessile invertebrates, which can
significantly shape the boundary layer in coral reefs and
rocky habitats. Ecological aspects in this taxon have
been well studied in the Caribbean, Mediterranean, and
Indo-Pacific. With few recent exceptions, studies in the
Eastern Pacific focused on taxonomy. We present a
quantitative assessment of Alcyonacea communities
from the southern Tropical Eastern Pacific, based on
video transects in the Marine Reserve El Pelado.
Seventeen species from the Plexauridae (8), Gorgoniidea
(8), and Clavularidae (1) were identified, comprising
6963 colonies dominated by Muricea (86.7%), particu-
larly M. plantaginea (48.6%). The overwhelming domi-
nance of M. plantaginea was the most striking and
previously unreported community trait, which con-
tributed to a moderate Shannon entropy (n = 31, H
mean 1.40, SD 0.22), equitability (n = 31, HE mean
0.16, SD 0.4), and species diversity expressed as effective
number of species (n = 31, mean 4.16, SD 0.87). Few
common species overprinted a more variable and subtle
community pattern among rarer species, suggested in
agglomerative hierarchical cluster analyses. Four species
(M. plantaginea, M. purpurea, M. fruticosa and Lepto-
gorgia alba) had the strongest influence on site groupings
in the correspondence analysis between a principal
component analysis of a Hellinger-transformed Alcy-
onacea species matrix and substrate categories, with
filamentous turf algae and crustose coralline algae being
the main determinants of site differentiation. Muricea
plantaginea’s qualities of a keystone species, and

the eurytopic and stenoecious distribution traits among
some species are discussed. The invasive Carijoa riisei
was confirmed as biological thereat to other Alcyonacea,
and possible physiological distribution limitations are
indicated.
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Introduction

Tropical shallow water Alcyonacea (soft corals and sea
fans) are among the characteristic sessile and colonial
faunal components of rocky habitats and coral reefs.
Erect growth forms compartmentalize the benthic
boundary layer by creating structural heterogeneity in
the form of micro habitats and nurseries for other
invertebrates (Patton 1972; Cantera et al. 1987; Vreeland
and Lasker 1989; Neira et al. 1992; Ramos 1995; Mosher
and Watling 2009) fishes (Lasker 1985; Etnoyer and
Warernchuck 2007; Taylor et al. 2013). Where Alcy-
onacea form dense stands, they further create a complex
mosaic of gradients in light penetration, which in turn
influence the distribution of sessile photoautotrophic
organisms, and of hydrodynamic gradients (Wainwright
et al. 1976) that affect water exchange and material cy-
cles, analogous to dense stands of macrophytes (Fréch-
ette et al. 1989; Vogel 1994; Irlandi 1996; González-Ortiz
et al. 2014). At least in Caribbean reef settings, popu-
lation densities of Alcyonacea and therefore also the
structural habitat heterogeneity which they offer,
showed considerable persistence (Lenz et al. 2015;
Tsounis and Edmunds 2017) during recent decades
amidst a general flattening of reefs caused be the
degradation of stony coral communities (Alvarez-Filip
et al. 2009). Alcyonacea are also a viable source of
bioactive components (Coll 1992; Gutierrez et al. 2006;
Rocha et al. 2011; Blunt et al. 2014). The generally
longevous Alcyonacea (Fabricius and Alderslade 2001)
are, nonetheless, negatively affected by pollution
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(Fabricius and McCorry 2006) and have been consid-
ered as bioindicators (Garcı́a-Parrado and Alcolado
1996). Hence, the biology and ecology of many Alcy-
onacea has been well studied in the Caribbean, Hawaii,
Indo-Pacific, Mediterranean, and the deep ocean, and
quantitative assessments have been a foundation of our
understanding of communities from this taxon (see
summary in Gomez et al. 2014). Yet studies from the
Eastern Pacific, with few exceptions from the northern
hemisphere (Abeytia et al. 2013; Gomez et al. 2014;
Sánchez and Ballesteros 2014), focused on taxonomy
and biogeography, resulting in a stark contrast to our
understanding of stony coral assemblages and reefs
whose community composition has been amply quanti-
fied in the Eastern Pacific (Glynn et al. 2016a). This has
led to a knowledge gap regarding the in situ community
composition of Alcyonacea within the region in general,
and particularly from southern regions of the Tropical
Eastern Pacific (TEP).

In the TEP, delineated as the region between south-
ern California and Northern Peru, studies on Alcy-
onacea began in the mid nineteenth century with
Valenciennes (1846; review in Breedy and Guzman
2002), and have revolved around taxonomy and species
inventories (Hickson 1928; Bielschowsky 1929; Stiasny
1941, 1943; Prahl et al. 1986; Sinsel-Duarte 1991; Reyes-
Bonilla et al. 1997; Breedy and Guzman 2002, 2003,
2005a, b, 2007, 2011, 2014, 2015, 2016; Guzman et al.
2004; Williams and Breedy 2004; Breedy and Cortés
2008, 2014; Guzman and Breedy 2008, 2011; Breedy
2009; Vargas et al. 2008, 2010; Breedy et al. 2009a, b;
Sánchez et al. 2011, 2014; Soler-Hurtado and López-
González 2012; Soler-Hurtado et al. 2016). Van Oppen
et al. (2005) presented initial ecological insights after
examining 27 Eastern Pacific species for endosymbiotic
zooxanthellae, finding none. Mortality due to epizooics
and thermal anomalies (Sánchez et al. 2011, 2014), as
well as the impact of the invasive Carijoa riisei on other
Alcyonacea (Sánchez and Ballesteros 2014) were moni-
tored in Colombia. Species composition and bathymet-
ric distribution were first quantified by Abeytia et al.
(2013) in southern Mexico, and by Gomez et al. (2014)
in Panama.

In continental Ecuador, extensive coral reefs and
coral assemblages are rare (Glynn 2003; Glynn et al.
2016a) and erect Alcyonacea and Antipatharia (see Bo
et al. 2012) distinctively shape the architectural com-
plexity of sessile invertebrate communities on rocky
substrates. Alcyonacean assemblages appear best
developed in well flushed off-shore habitats (like Bajo
Montañita and numerous small islands and rocks along
the shore of the provinces Manabı́ and Santa Elena; F.
Rivera and P. Martı́nez, pers.com.) where turbulent
environments exposed to strong currents and swells ex-
ist, but this was not yet quantified. The knowledge base
for continental Ecuadorian Alcyonacea has so far in-
cluded broad species inventories (Rivera and Martı́nez
2011), a site-specific account of Gorgoniidae (Figueroa
2015), and the description of new Gorgoniidae and

species range extensions (Soler-Hurtado and López-
González 2012; Soler-Hurtado et al. 2016). References
to continental Alcyonacea were also made in publica-
tions on the Galapagos Islands (Breedy and Guzman
2005a, b; Hickman 2008; Breedy et al. 2009a, b) as well
as in reviews of Eastern Pacific Eugorgia (Breedy et al.
2009a), Heterogorgia (Breedy and Guzman 2011) Lep-
togorgia (Breedy and Guzman 2007) and Muricea
(Breedy and Guzman 2015, 2016), constituting 26 re-
ported species.

This study presents a quantitative assessment of
shallow water Alcyonacea from the southern TEP, in the
Marine Reserve El Pelado (MREP), continental Ecua-
dor. Species composition and diversity, as well as dis-
tributional patterns across different substrate types are
described and elucidated based on video transects. The
study serves as a first step towards a characterization of
faunistic community traits that facilitate regional com-
parisons of the condition of this valuable marine taxon,
and justifications for its conservation.

Materials and methods

Study area

The Marine Reserve El Pelado (MREP), province of
Santa Elena, Ecuador, lines the coast between the
northern limits of Valdivia and the river mouth at Pal-
mar to its south (Fig. 1). It is one of 11 continental
protected marine areas, was declared as marine reserve
in 2012, and encompassed 13005 and 96 ha of marine
and terrestrial environments, respectively (Government
of Ecuador 2017). Situated at the convergence of the
southward-flowing Panama Flow and the northward
flowing Peru Current, as well the southward-flowing
annual El Niño current (Fiedler 1992; Strub et al. 1998),
the MREP lays within the range of the seasonally and
latitudinally migrating Equatorial Front (EF). Conse-
quently it is exposed to fluctuations in salinity and
temperature of surface waters (Fiedler and Lavine 2016).

Rocky environments within the MREP extended
across the submerged portion of El Pelado Islet, its
neighboring northwestern, northeastern and southeast-
ern mounds, all of which are separated by sandy envi-
ronments, and which are here jointly referred to as the
El Pelado Platform (EPP). To a lesser extent, rocky
substrates marked the shoreline in the immediate vicin-
ity of Ayangüe (Fig. 2). Additionally, isolated rocky
mounds such as Bajo Tello had rich benthic faunal
overgrowth. Rocky strata of Islet and its neighboring
mounds were characteristically tilted towards ESE, cre-
ating plane and gently inclined easterly slopes, while
westerly slopes were steeper and included overhangs
formed by the erosion of softer sediments. Westerly
slopes are in a windward position, as prevailing winds
come from the southwest (Gálvez and Regalado 2007).
All together, rocky environments covered approximately
15.5 ha and were evident to depths of 27 m, beyond



witch the seafloor was composed of sandy environments.
Twenty-eight sites around the Islet were haphazardly
selected for quantitative surveys (October 2015–January
2016). Four additional sites near shore were examined in
May 2016.

Species identification

Alcyonacea were photographed in situ and branch seg-
ments collected and dried for identification. With

changing depths and ambient illumination, the white
balance settings of the camera (Canon Power Shot D20,
with underwater housing WP DC45) was adjusted to
match coloration of colonies recorded with the colors
seen by the diver. External morphological features de-
tectible in dried specimens from Heterogorgia (Breedy
and Guzman 2011), Leptogorgia (Breedy and Guzman
2007), Muricea (Breedy and Guzman 2015, 2016) and
Pacifigorgia (Breedy and Guzman 2002, 2007, 2011) as
well as descriptions of live colonies (Hickman 2008;
Rivera and Martı́nez 2011) were used for identification.

Fig. 1 Delineation of the Marine Reserve El Pelado (MREP),
Santa Elena. Survey sites 1–28 were located around the El Pelado
Islet. Sites 29–32 were located near the northern and southern end
of Ayangüe Bay. Insert: Surface currents PaC (Panama Current),

AENC (Annual El Niño Current), and PeC (Peru Current), and the
EF (Equatorial Front) during the months January–April. Adapted
from Glynn (2003)



Additional verification of some species was carried out
through the extraction of sclerites from tissue samples
with a 2% sodium hypochlorite (Bayer 1961), and their
examination with an inverted microscope Olympus LX
52.

Video belt transects

At 31 sites, two belt transects (BT), each covering 40 m2

were surveyed. Transects weighted with 36 g leads every
50 cm, were placed perpendicularly to the depth gradi-

ent, contouring the seafloor to eliminated discrepancies
between area considered in the belt transect and the
actual area surveyed. Transect length was labeled with
small PVC platelets every 2 m to facilitate orientation
and to allow repeated video records of certain sections.
Starting points (coordinates) and the approximate
heading of each transect, maximum depth, as well as
rugosity ranks from 1 to 3 (low = 1, mostly planar;
moderate = 2, mostly non-planar with amplitudes in
terrain roughness < 100 cm; high = 3, non-planar with
amplitudes in terrain roughness > 100 cm) were noted
(Table 1).

Fig. 2 El Pelado Platform. Survey sites 1–14 were spread across the NW rocky mound, sites 15, 16 and 19–21 around the Islet, 17 and 18
at NW, and 22–28 at SE. Approximate area of submerged rocky environments: NW 6.2 ha, NE 1 ha, Islet 5.2 ha, and SE 3.1 ha



The area within 1 m from either side of the transect
line (20 m2) was recorded by video (23015 kbit s�1), at
an angle of no more than 30�, from 0 to 20 m on either
side of transect. A moderate swimming pace of no more
than 15 cm s�1 was most effective for species identifi-
cation. Prior to each recording, the white balance set-
tings were adjusted. Thus, a total of 2480 m2 were
documented.

All Alcyonacea detectable within each BT video were
subsequently counted and assigned to a species or clas-
sified as unidentifiable. Colonies attached outside of the
BT, but with least 50% of the colony within the con-
sidered area, were included in the quantification.

Benthos composition data

For 20 sites, benthic composition data were collected
along each transect via photo-series composed of 20
evenly spaced images, each documenting 120 cm2 of
benthos. Due to the commonly turbid waters at the
MREP, single images of larger areas did not provide the
resolution necessary for identifying the benthic make up.
Ten points randomly superimposed onto each image
(400 points per site) using CPCe (Kohler and Gill 2006)

allowed a proper characterization of the benthic com-
position. The benthos under each point was visually
identified and assigned to one of the categories bal-
anomorph cirripeds (BC), crustose coralline algae
overgrowing balanomorph cirripeds (CCA.BC) crustose
coralline algae (CCA), filamentous turf algae on rock
(FTA.R), filamentous turf algae on sediment (FTA.S),
pebbles (P), rock (R), sediments (S), schill (SH) and
sessile invertebrates (SI).

Species diversity and distribution

Species diversity was expressed and compared in terms
of effective number of species (ENS) also referred to as
Hill Numbers (see MacArthur 1965; Hill 1973), which
were derived from Shannon‘s entropy equation (H)
(Shannon 1948) as described in Jost (2006), ESN being
the exponent of Shannon‘s entropy. This renders an
intuitive representation of magnitude of differences be-
tween sites as it gives the number of equally abundant
species necessary to produce the observed value of
diversity.

Data on colonies per species and substrate composi-
tion at individual sites were explored for patterns in

Table 1 Surveyed sites and transect features

Site no. Area label Coordinates of starting points Approximate headings Depth (m) Rugosity rank

1 EPPNW 1�55¢58.25¢¢S 80�47¢32.85¢¢W 175� 12.8 2.0
2 EPPNW 1�55¢59.60¢¢S 80�47¢32.90¢¢W 170� 14.6 2.0
3 EPPNW 1�56¢01.35¢¢S 80�47¢31.94¢¢W 173�, 176� 15.2 1.0
4 EPPNW 1�56¢00.80¢¢S 80�47¢32.05¢¢W 280�, 180� 13.4 2.0
5 EPPNW 1�56¢00.34¢¢S 80�47¢32.10¢¢W 200� 12.0 1.0
6 EPPNW 1�56¢00.56¢¢S 80�47¢32.85¢¢W 170� 19.6 2.0
7 EPPNW 1�56¢00.12¢¢S 80�47¢33.01¢¢W 165� 20.2 3.0
8 EPPNW 1�56¢00.60¢¢S 80�47¢33.34¢¢W 165� 23.3 3.0
9 EPPNW 1�55¢54.93¢¢S 80�47¢26.36¢¢W 215�, 290� 19.3 3.0
10 EPPNW 1�55¢54.93¢¢S 80�47¢26.36¢¢W 55�, 100� 17.3 2.0
11 EPPNW 1�55¢56.85¢¢S 80�47¢30.45¢¢W 240�, 260� 10.0 1.0
12 EPPNW 1�55¢56.75¢¢S 80�47¢30.35¢¢W 15�, 315� 12.2 2.5
13 EPPNW 1�55¢56.42¢¢S 80�47¢29.28¢¢W 290� 15.4 1.5
14 EPPNW 1�55¢55.60¢¢S 80�47¢20.10¢¢W 310�, 250� 15.6 1.0
15 EPP Islet 1�56¢00.59¢¢S 80�47¢19.35¢¢W 230, 205� 12.4 2.0
16 EPP Islet 1�56¢01.65¢¢S 80�47¢20.35¢¢W 215� 12.8 2.5
17 EPP Islet 1�55¢53.10¢¢S 80�47¢14.25¢¢W 150�, 200� 14.3 1.5
18 EPP Islet 1�55¢52.85¢¢S 80�47¢14.40¢¢W 250� 15.8 1.5
19 EPP Islet 1�56¢06.25¢¢S 80�47¢19.80¢¢W 170�, 165� 10.0 1.5
20 EPP Islet 1�56¢05.90¢¢S 80�47¢19.75¢¢W 10�, 15� 09.1 1.5
21 EPP Islet 1�56¢10.20¢¢S 80�47¢20.12¢¢W 60� 15.2 2.5
22 EPP Islet 1�56¢09.60¢¢S 80�47¢28.80¢¢W 355� 14.5 1.0
23 EPPSE 1�56¢20.25¢¢S 80�47¢12.65¢¢W 160�, 150� 14.5 3.0
24 EPPSE 1�56¢21.30¢¢S 80�47¢11.80¢¢W 325� 17.3 2.5
25 EPPSE 1�56¢20.65¢¢S 80�47¢13.34¢¢W 135� 19.6 1.0
26 EPPSE 1�56¢21.13¢¢S 80�47¢12.78¢¢W 135� 19.6 3.0
27 EPPSE 1�56¢17.58¢¢S 80�47¢12.01¢¢W 164� 12.8 1.5
28 EPPSE 1�56¢18.78¢¢S 80�47¢11.39¢¢W 155� 15.2 1.0
29 Ayangüe 1�58¢57.82¢¢S 80�45¢39.16¢¢W 0�, 355� 03.7 1.0
30 Ayangüe 1�59¢01.84¢¢S 80�45¢37.10¢¢W 180� 07.3 1.5
31 Ayangüe 1�59¢14.45¢¢S 80�45¢27.10¢¢W 40� 15.0 2.0
32 Ayangüe 1�59¢14.45¢¢S 80�45¢27.10¢¢W 160� 15.0 2.0
33 Bajo Tello 1�55.41.50¢¢S 80�46¢50.00¢¢W n/a 30 2.5

Site numbers 1–32 are labeled X1–X32, respectively, in Fig. 4



community structure. Analyses evaluated Alcyonacea
and substrate composition of the benthos first individ-
ually, then exploring coincidences in pattern. To obtain
overview of potential faunal groupings, a hierarchical,
agglomerative cluster analysis with Ward’s method of
linkage (Legendre and Legendre 2012) was performed
on raw and log + 1 transformed data. The latter was
done to explore whether a greater weighting of rare
species might expose otherwise undetected community
patterns. Other benthic community patterns were ex-
plored with principal components analysis (PCA). With
basic groupings known, potential coincidence of Alcy-
onacean and other benthic community pattern was ex-
plored with a Correspondence Analysis (CA) (Borcard
et al. 2011; Legendre and Legendre 2012) of the species
matrix with an overlay of the ordination of the envi-
ronmental data. The species data were Hellinger trans-
formed (Borcard et al. 2011; Legendre and Legendre
2012) prior to submission to PCA and CA in order to
maintain adequate statistical distances. The number of
significant axes required to explain the majority of
variation in the dataset was evaluated by following the
Kaiser–Guttman and Broken Stick criteria (Borcard
et al. 2011). Scaling of the biplot multivariate analyses
were performed in R (R Development Core Team 2012)
using libraries ape (Paradis et al. 2004) and vegan (Ok-
sanen et al. 2017).

Results

Alcyonacea were observed at 31 sites, across which a
total of 6963 colonies were recorded, including 17 spe-
cies of Plexauridae (8), Gorgoniidae (8), and Clavulari-

dae (1) (Table 2). Two Gorgoniidae, Pacifigorgia firma
and P. adamsii were observed in 2 m depth on the
eastern margins of the islet, but not within the belt
transects. No Alcyonacea were observed at site 29, the
shallowest (4 m) and closest to shore (110 m). An
average of 3.1% (n = 31, SD 1.9%; in total 200 of 6963)
colonies per site could not be identified in the exami-
nation of videos.

Overall, 86.7% of the colonies were Plexauridae from
the genus Muricea and 48.6% were Muricea plantaginea
alone, causing a leptokurtic distribution in the abun-
dance of individual species (Kurtosis 9.8n3). Most M.
plantaginea colonies (3215 of 3381) were observed with
extended tentacles which displayed four color morphs.
The goldenrod-orange, whitish-gray morphs comprised
97.1 and 2.6% of the colonies, respectively, while the
medium sea green and bright yellow morphs were rare
with only 4 and 3 colonies, respectively. No color vari-
ations were noted in the coenenchyme of dried samples.
At Bajo Tello, where only qualitative observations were
made, the whitish-gray color morph was more common
than the goldenrod-orange color morph. Color varia-
tions were further observed in Leptogorgia alba, the
most abundant Gorgoniidae, constituting 7.0% of the
recorded colonies. It was the only other species that
occurred in distinct color morphs that were also evident
in the coenenchyme of dried samples, namely purple
(72.7%) and white (27.3%).

Number of colonies per site ranged from 21 to 521
(mean 224.7, SD 148.0), with colony densities ranging
from 0.3 to 6.5 m�2 (mean 2.9 m�2, SD 1.9 m�2; Ta-
ble 3). Apart from one site on the EPP and two near
Ayangüe, M. plantaginea dominated all sites by consti-
tuting an average of 49.1% (SD 13.7) of the colonies.

Table 2 Alcyonacea species observed in the Marine Reserve El Pelado

Species Colonies in transects Mean number of colonies (m�2) SD

Suborder Holaxonia (Studer, 1887)
Family Plexauridae (Gray, 1859)
1. Heterogorgia hickmani (Breedy and Guzman, 2004) 52 0.02 0.04
2. Muricea austera (Verrill, 1869) 181 0.07 0.10
3. Muricea crassa (Verrill, 1868) 13 > 0.01 > 0.01
4. Muricea fruticosa (Verrill, 1869) 1252 0.55 0.75
5. Muricea plantaginea (Verrill, 1864) 3381 1.42 0.84
6. Muricea purpurea (Verrill, 1864) 944 0.39 0.22
7. Muricea squarrosa (Verrill, 1869) 104 4.68 6.86
8. Psammogorgia cf arbuscula (Verrill, 1866) 160 0.05 0.07
Family Gorgoniidae (Lamoroux, 1812)
9. Leptogorgia alba (Duchassaing and Michelotti, 1860) 487 0.21 0.23
10. Leptogorgia cuspidata (Verrill, 1865) 3 > 0.01 > 0.01
11. Leptogorgia pumila (Verrill, 1868) 28 0.01 0.03
12. Leptogorgia taboguilla (Hickson, 1928) 116 0.05 0.07
13. Pacifigorgia adamsii (Verrill, 1868) 0 0 0
14. Pacifigorgia irene (Bayer, 1951) 2 > 0.01 > 0.01
15. Pacifigorgia rubicunda (Breedy and Guzman, 2003) 28 0.02 0.05
16. Pacifigorgia firma (Breedy and Guzman, 2003) 0 0 0

Suborder Stolonifera (Thompson and Simpson, 1809)
Family Clavularidae (Hickson, 1894)
17. Carijoa riisei (Duchassaing and Michelotti, 1860) 12 0.01 0.01

Unidentified specimens were not considered



Abundant species were generally widely distributed
across sites and vice versa, but the rare L. taboguilla (116
colonies, 2.6%) was present at 30 sites, whereas P.
arbuscula (160 colonies, 2.3%) was present at 19 sites
(Fig. 3).

Species richness ranged from 2 to 13 between sites,
Shannon’s entropy (H) ranged from 0.69 to 1.78
(n = 31, mean 1.40, SD 0.22) and equitability (HE)
ranged from 0.11 to 0.18 (n = 31, mean 0.16, SD 0.4),
reflecting the numerical dominance of few species,
especially M. plantaginea. Species diversity (effective
number of species, ENS) per site ranged from 2 to 5.95
(n = 31, mean 4.16, SD 0.87). The most species diverse
sites (ENS > 5) were from depths between 15 and 17 m,
including four very turbulent locations, two on the EPP
(sites 22 and 23) and two near the coast (sites 31 and 32).

Community structure, compared by untransformed
and log-transformed datasets in agglomerative hierar-
chical cluster analysis, indicated that weighing rare
species more heavily (log-transformed), exposed a more
subtly subdivided pattern. This suggested that few very
common species overprinted a much more variable and
subtle community pattern in rarer species (Fig. 4a, b).
Also, ordination of sites explained post hoc by a species
biplot in PCA (Fig. 5), indicated that four common

species (M. plantaginea, M. purpurea, M. fruticosa and
Leptogorgia alba) had the strongest influence on site
grouping.

Gradients in substrate composition were observed
between sites, their ordination by PCA showing discrete
groupings. The biplot (Fig. 6a) suggested that presence
or absence of filamentous turf algae (on rock FTA.R or
sand FTA.S) and crustose coralline algae (CCA) were
the main determinants of site differentiation. This was
supported by the scree plot (Fig. 6b), which suggested
that the first three principal components (FTA.R,
FTA.S, CCA) explained most of the variability. The
strongest correlations were found between filamentous
algae and the first two PCs with correlations decaying
increasingly from PC3 (Fig. 6c), and with rugosity and
depth being unimportant.

During the installation of transect lines, epizooic
organisms were incidentally detected on Alcyonacea
including amphipods, decapods, bivalves, and ophi-
uroids. Zoanthids and encrusting bryozoa had partially
colonized a variety of Muricea spp., generally starting at
the base of the affected colony. Carijoa riisei also over-
grew Muricea spp. but from any point of contact. It was
most prominent between 10 and 17 m depth, diminish-
ing in abundance with increasing depth, and principally

Table 3 Alcyonacean community composition per site at the Marine Reserve El Pelado

Site Colonies N Colonies (m�2) Species richness Shannon H Shannon equitability HE ENS

1 160 2.00 9 1.50 0.17 4.48
2 283 3.54 8 1.33 0.17 3.77
3 230 2.88 10 1.36 0.14 3.90
4 127 1.59 9 1.29 0.14 3.63
5 133 1.66 6 1.08 0.18 2.95
6 278 3.48 10 1.51 0.15 4.53
7 521 6.51 10 1.49 0.15 4.44
8 479 5.99 12 1.27 0.11 3.55
9 370 4.63 12 1.49 0.12 4.45
10 319 3.99 11 1.63 0.15 5.11
11 140 1.75 9 1.37 0.15 3.95
12 181 2.26 10 1.22 0.12 3.40
13 201 2.51 9 1.23 0.14 3.41
14 191 2.39 9 1.13 0.13 3.09
15 92 1.15 5 1.19 0.24 3.29
16 162 2.03 8 1.28 0.16 3.60
17 327 4.09 11 1.55 0.14 4.72
18 188 2.35 11 1.45 0.13 4.26
19 22 0.28 8 1.55 0.19 4.70
20 30 0.38 2 0.69 0.35 2.00
21 197 2.46 14 1.64 0.12 5.18
22 144 1.80 12 1.78 0.15 5.93
23 205 2.56 11 1.35 0.12 3.85
24 248 3.10 10 1.59 0.16 4.88
25 177 4.43 9 1.34 0.15 3.82
26 735 9.19 13 1.66 0.13 5.26
27 192 2.40 10 1.46 0.15 4.33
28 156 1.95 10 1.42 0.14 4.15
29 0 0 0 n/a n/a n/a
30 21 4.40 6 1.23 0.21 3.43
31 179 3.46 10 1.71 0.17 5.55
32 275 2.00 10 1.70 0.17 5.48

ENS effective number of species



grew on vertical surfaces and overhangs, which were
usually within in the alignment of the transects. Epizooic
Zoanthids and C. riisei were not observed on Psam-
mogorgia, Leptogorgia, and Pacifigorgia. Carijoa riisei
also overgrew branching hermatypic stony corals, bi-
valves, and ascidians, but it stayed clear of ahermatypic
encrusting stony corals such as Caryophyllidae, even
when a coral patch had been surrounded.

Discussion

A rich Alcyonacean community exists in the Marine
Reserve El Pelado, in southern continental Ecuador,
encompassing 17 of the 26 species so far reported for the
mainland in taxonomic studies by Breedy and Guzman
(2005a, b, 2007, 2011, 2015, 2016); Hickman (2008);
Breedy et al. (2009a, b); Rivera and Martı́nez (2011);

Soler-Hurtado and López-González (2012); Figueroa
(2015); and Soler-Hurtado et al. (2016). Muricea plan-
taginea, M. fruticosa, M. purpurea, and Leptogorgia alba
had the strongest influence on site groupings of Alcy-
onacea but M. plantaginea was overwhelmingly domi-
nant in all habitats, resulting in the community’s
moderate species diversity. This stock-forming (Bes-
tandsbildend) quality of M. plantaginea at the MREP
was the most striking Alcyonacean community trait, has
so far not been reported from other locations in the TEP
and may represent a faunistic distinction of continental
Ecuador. Previous quantitative studies were exclusively
from the northern hemisphere. Contrasting the Muricea
dominated MREP community, Alcyonacea in Mexico
were dominated by Leptogorgia, particularly L. alba, L.
cuspidata and L. ena (Abeytia et al. 2013), whereas
Leptogorgia alba and Pacifigorgia rubicunda dominated
in Panama (Gomez et al. 2014).

Given the overwhelming occurrence of M. plan-
taginea, only subtle heterogeneity in the community
structure was detected among the rarer species in the
hierarchical, agglomerative cluster analysis. Habitat
characteristics that significantly shaped Alcyonacea
distribution, were the substrate types, filamentous turf
algae (FTA) and crustose coralline algae (CCA), which
were the main determinants of site differentiation as
indicated in the PCA. Both were associated with
underlying rocky foundations offering long-term stabil-
ity for Alcyonacean holdfasts (see Wanatabe et al. 2009)
allowing the development and persistence of (large) co-
lonies. Rugosity and depth, on the other hand, played
no significant role in shaping the community structure at
the examined depths (10–30 m) consistently exposed to
strong currents and turbulence. Contrastingly, light
penetration related to depth can be excluded as factor
directly influencing the Alcyonacean community com-
position in the region, as Alcyonacea from the TEP are
azooxanthellate and thus heterotrophs rather than
mixotrophs (Van Oppen et al. 2005). Other depth-re-

Fig. 3 Linear regression of species abundance vs. site presence.
Species with more than 100 colonies that fall above the trend line
(i.e. L. taboguilla) show a eurytopic distribution, whereas those
below the trend line (P. arbuscula, M. austera) maybe more
stenoecious. With a limit of 31 sites,M. plantaginea’s overwhelming
numerical dominance automatically falls under the trend line,
giving no indication of possible site preferences in this evaluation

Fig. 4 Cladograms of hierarchical cluster analyses of species abundance-per-site data from the Marine Reserve El Pelado. Site numbers 1–
32 are labeled X1–X32, respectively, in the cladograms a untransformed dataset and b log-transformed dataset



lated physiological adaptations may account for the
bathymetric distribution patterns observed in 10–70 m
in Mexico (Abeytia et al. 2013). In this context, M.
plantaginea may be considered a generalist (eurytopic
species) as it was consistently among the most common
species at all sites. Also, the broad distribution of L.
taboguilla across all substrate types, despite the com-
paratively low number of colonies, suggests a generalist
species, whereas P. arbuscula and M. austera may have
narrower ecological tolerances (stenoecious species)
based on their limited site distribution. Gomez et al.
(2014) also reported an uneven site distribution of P.
arbuscula around Coiba Island, Panama. Such differing
habitat requirements among the rarer species may be at
the root of the observed community differentiation.

The ecological implication of M. plantaginea’s dom-
inance at the MREP is linked to its trait of being by far
the largest (Breedy and Guzman 2002, 2007, 2011, 2015,
2016) of the common species at MREP. Muricea plan-
taginea consequently constituted the most abundant
Alcyonacean microhabitat and host for epibiotic fauna
(Lasker and Coffroth 1988). As such, it holds qualities of
a keystone species or more specifically an autogenic
ecosystem engineer sensu Cuddington (2012) in that its
presence alters the environment (structuring the
boundary layer and providing habitat) through non-
trophic interactions with associated organisms (faculta-
tive and obligatory). Furthermore, this species is
evidently well adapted to the seasonally migrating
Equatorial Front and its accompanying fluctuations
surface water in salinity and temperature (Fiedler and

Lavine 2016). Temperature records from 1996 to 2016
show mean annual fluctuations of 8.6 and 11.9 �C in
depths of 0 and 40 m, respectively (pers.com. S. Son-
nenholzner). Sudden decreases in its population, as in-
duced by mass mortality events (Sánchez et al. 2014;
Cerrano et al. 2000), could consequently trigger cas-
cading changes in the community structure of Alcy-
onacea in general and the availability of foundation
species sensu Grigg (1975) for commensal organisms (see
Mosher and Watling 2009) in particular. Furthermore
diseases and predation leading to partial mortality or
entire colonies devoid of live tissue also favor oppor-
tunistic epizoic and fouling species. From a habitat and
underwater landscape conservation standpoint, M.
plantaginea thus plays an important role within the
MREP.

Studies on reproductive patters and recruitment rates
are key elements in explaining community structure in
many sessile Anthozoa (Fautin 2002; Santangelo et al.
2003; Harrison 2011). Yet of the 17 species considered
here, the reproductive patterns of only two have been
studied so far, M. fruticosa (Grigg 1970, 1975, 1977) and
C. riisei (Kahng 2006; Kahng et al. 2008). Both are
gonochoric like the majority of Alcyonacea (Kahng
et al. 2011). Reproductive success in Alcyonacea may
therefore partially dependent on the proximity of male
and female colonies, as demonstrated for C. riisei
(Kahng et al. 2008), but also on colony size (Yoshioka
1994). If gonochorism proves to be common among
other Alcyonacea surveyed in this study, the abundant
species may have a competitive advantage over rare

Fig. 5 Correspondence analysis between site groupings and
Alcyonacea. a Biplot with circle of equilibrium contribution
showing variables that with equal (within circle) or lower (longer
than r circle) contribution than average to dimensions of PCA
space. Thus, the species represented by the longest vectors are
those with most influence on site grouping. b Kaiser–Guttman

(above, those PCS > red line are most important) and Broken-
Stick (below, those PCs that are greater than Broken-Stick
simulation in red are most important) criteria that support that
only 4 PCs explain the majority of the variation. Color
figure online



species. However, successful fertilization, whether
among gonochoric or hermaphroditic species, does not
inherently imply successful larval recruitment. Ecuador’s
continental waters may also receive Alcyonacean plan-
ulae from a broad geographic range due to their position
at the convergence of the southward flowing Panama
Flow and the northward flowing Peru Current, as well
the southward-flowing annual El Niño current (Fiedler
1992; Strub et al. 1998). The paucity of studies on sexual
reproductive patterns and recruitment rates in Eastern
Pacific Alcyonacea (Simpson 2009; Kahng et al. 2011;
Gomez et al. 2014), thus obscures a clearer interpreta-
tion of community structure, and the ability of formu-
lating well-founded conservation measures for this
taxon.

Potential biological threats to Alcyonacea along the
Eastern Pacific Equatorial Front include the spread of
Carijoa riisei, a fouling species (Bayer 1961) with fast
growth (Kahng and Grigg 2005) and the ability to
overgrow other sessile organisms (Grigg 1977). Native to
the Pacific (Concepcion et al. 2010) and not alien as

previously interpreted (Grigg 2003), its invasiveness is
undisputed. In Colombia, it overgrew and killed
numerous colonies from various Alcyonacean species at
depths of up 15 m at Gorgona Island (Sánchez and
Ballesteros 2014). In the MREP C. riisei occurred at five
of the quantified sites, typically on vertical surfaces, in
depths between 10 and 17 m, commonly overgrowing
different Alcyonacea and other sessile invertebrates, but
not in the shallower coastal sites. Carijoa riisei also ap-
peared to be unable to invade patches of encrusting
ahermatypic stony corals (Caryophyllidae), pointing at
chemical defenses in the latter (see Kelman et al. 2009).
Physiological limitations of C. riisei include irradiance
and low temperatures in shallow and deep settings,
respectively (Kahng and Grigg 2005), as demonstrated
in Hawaii where it occurred from 30 to 120 m depth
(temperature range 22–28 �C). This raises the question
whether C. riisei can colonize depths beyond 17 m along
the Equatorial Front, exposed to annual bathymetric
fluctuations in thermoclines (Wang et al. 2016). In other
words, can C. riisei, a gonochoric species exhibiting no

Fig. 6 PCA of substratum data. (a) Groupings were evident along
the PCs representing filamentous turf algae with sediment
accumulation (FTA.S), on rocks (FTA.R), and crustose coralline
algae (CCA). The scree plot b shows that the first three PCs

explain the majority of the variability (c) correlation of measure-
ments with PC scores of the most import three substrata. Color
figure online



lunar periodicity in gametogenesis (Kahng et al. 2008),
benefit from downward shifting thermoclines as tem-
poral bathymetric expansion windows in the TEP? The
answer will indicate whether deeper sites may serve as
refugia for the dominant species M. plantaginea and
others.

In conclusion, Alcyonacea from the southern TEP
showed a moderately diverse community of 17 species,
dominated by Muricea plantaginea with qualities of a
keystone species structuring the benthic boundary layer
and providing microhabitats, thus differing from Mexi-
can and Panamanian communities. Variable distribution
patterns correlated to benthic substrate composition,
primarily FTA and CCA were noted. Species abundance
and site overlap pointed at L. taboguilla being a gener-
alist and P. arbusculamore specialized in its distribution.
The invasive C. riisei posed a biological threat to other
Alcyonacea, which it overgrew, showed bathymetric
distribution limitations, and appeared to be unable to
overgrow ahermatypic caryophyllid stony corals. These
findings narrowed a long-lasting ecological information
gap on Alcyonacea from Eastern Pacific Equatorial
Front, a region at the heart of studies addressing effects
of phenomena like the El Niño Southern Oscillation on
benthic communities in the light of climate change
(Glynn et al. 2016b). Alcyonacean community traits
from Ecuador provide a baseline for a better under-
standing their resistance or resilience to future environ-
mental changes.
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Pulmo, México. Rev Biol Trop 45:1439–1443

Rivera F, Martı́nez PC (2011) Guı́a photográfica de corales y
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