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Coastal regions comprise spawning areas for most marine fishes 
of the world (Sundby & Kristiansen, 2015). Thus, several marine 
fish species spawn in offshore areas, relying on ocean currents to 
disperse their progeny. Dispersal mechanisms often bring eggs and 
larvae into areas of varying salinity and temperature (Hart & Purser, 
1995). External environmental conditions could affect early devel-
opment processes, compromising survival and future growth. In 
fact, according to Bœuf and Payan (2001) there are very few fish 
species whose development and growth were not influenced by sa-
linity changes. In addition, salinity affects the buoyancy of eggs and 
larvae and this can impact the ability of larvae to get to the water 
surface to inflate their swim bladder (Fielder, Bardsley, Allan, & 
Pankhurst, 2005). Longfin yellowtail (Seriola rivoliana, Valenciennes, 
1833) is a carangid species and excellent candidate for aquaculture 
due to its fast growth, flesh quality and high market value (Kissinger, 
García-Ortega, & Trushenski, 2016; Mesa-Rodríguez et al., 2018; 
Quiñones-Arreola et al., 2015; Roo et al., 2014). However, informa-
tion regarding the effects of specific environmental conditions (e.g. 
salinity) on the incubation of eggs and yolk-sac larvae of longfin yel-
lowtail is scarce. Therefore, the purpose of this study was to exam-
ine the effects of water salinity on the embryonic development, and 
survival of longfin yellowtail larvae.

Fertilized eggs were obtained from four natural spawnings of 
two different broodstock groups (BG) held in captivity at National 
Centre of Aquaculture and Marine Science of ESPOL Polytechnic 
University ‘CENAIM-ESPOL’ (Table 1). During the symmetrical 

cleavage-blastula stage (approximately 6  hr post fertilization, 
HPF), eggs were transferred directly to incubation tanks contain-
ing 50 L of water with different experimental salinities. Before 
stocking of eggs, the experimental water salinity (15, 20, 25, 30, 
35, 40 and 50  g/L) was adjusted by adding either dechlorinated 
fresh tap water (<1 g/L; tap water was dechlorinated with the use 
of sodium thiosulfate (15 mg/L) or brine solution (a stock of 80 g/L 
water was established mixing ambient sea water and brine). The 
concentration of stock brine solution as well as the experimen-
tal salinities was confirmed using a portable refractometer Vital 
SineTM SR6 (Pentair Aquatic Eco Systems Inc.). Each experimental 
salinity was randomly assigned to triplicate tanks. Stocking density 
was 200 eggs/L. Diameter of whole egg and oil globule was mea-
sured with the aid of a conventional MITUTOYO PJ-A3000 pro-
filer (Mitutoyo Corporation Inc.). Ambient seawater temperature 
ranged between 25.2 and 26.1°C; and pH between 7.97 and 8.31 
(pHTestr30, Eutech InstrumentsTM, Thermo Fisher Scientific®). 
One airstone was placed in each tank to maintain the dissolved 
oxygen concentration between 5.78 and 6.90 mg/L, evaluated by 
an oxygen meter (YSI 550A, YSI Incorporated).

Spawns/S-152 and S-158 were used to explore the salinity toler-
ance of eggs and 24-hr yolk-sac larvae survival (Trial 1), whilst/S161 and 
S-8 were used to evaluate salinity effects on embryonic development, 
buoyancy of eggs, hatching and survival up to 24-hr of yolk-sac larvae 
(Trial 2). The tests of eggs buoyancy were performed with a batch of 
eggs placed in a 500-mL cylinder containing evaluated water salinities. 
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Thereby, water and eggs were mixed by inverting the cylinder and then 
(after 10 min) the numbers of floating eggs and on the bottom were 
recorded. Embryonic development was determined at 2 hr intervals, 
from stocking of eggs to completion of hatching. Changes in eggs over 
time were observed with a dissecting microscope (OLYMPUS CX31, 
Olympus America Inc.), and developmental stages were grouped ac-
cording to Thompson and Riley (1981) methodology cited by Geffen, 
Fox, and Nash (2006). Newly hatched larvae (notochord length, NL 
and yolk-sac volume, YSV) were measured according to Bustos and 
Silva (2011). Dry weight of yolk-sac larvae (DWL) was determined by 
placing three samples of about 20 larvae on individual trays of alumin-
ium foil. Larvae were rinsed with distilled water and then oven-dried 
at 65°C for 24 hr. After drying, each sample was weighed on an elec-
tronic balance METTLER AE240 (±0.01  mg; Mettler Toledo). Larval 
survival was determined by counting the remaining larvae after 24 hr 
post hatching. All data were subjected to Kolmogorov–Smirnov test 
and Bartlett test to verify the normality and homoscedasticity respec-
tively. A one-way analysis of variance ANOVA (trial 1) and two-way 
ANOVA (spawn sources and salinity; trial 2) were used to compare 
the effects of salinity on eggs and yolk-sac larvae. Survival and hatch-
ing data (in percentages) were arcsine-transformed prior to analysis. 
Significant differences were determined with Tukey's test for multiple 
comparisons at a significance level of 95%. Differences of eggs buoy-
ancy in trial 2 were determined by a Kruskal–Wallis analysis at 95%. 
The XLSTAT®2016.5 (Addinsoft) software was used.

Longfin eggs developed and hatched at all salinities tested. 
However, below 30 g/L, hatching success was <8%. In trial 1, the 
highest hatching rate was registered at 50 g/L being compared 
only with 35 and 40  g/L (p  <  .05). However, 24-hr survival of 

yolk-sac larvae was around 40% only at 35 and 40 g/L (Table 2). 
Similar results (in terms of statistical meaning) were registered in 
trial 2. Low-salinity water has been used to improve growth rates 
in many species for mass seed production (Bœuf & Payan, 2001). 
Blacio, Darquea, and Rodríguez (2003), reported better survival 
of S. rivoliana larvae when cultured at 25 g/L (lower salinity than 
spawning tank, 35 g/L) from 2 to 30 days post-hatch (DPH). In 
our study, 100% of mortality of yolk-sac larvae occurred below 
and beyond salinities of 35 and 40 g/L respectively. Conversely, 
yolk-sac larvae of Paralichthys olivaceus showed better toler-
ance to lower salinity in comparison with 4- to 14-day-old lar-
vae after hatching (Hiroi, Sakakura, Tagawa, Seikai, & Tanaka, 
1997). Similar results were observed between mid-stage larvae 
versus late-stage larvae of Epinephelus bruneus (Inoue, 2016). 
Faulk and Holt (2006) stated that typically the tolerance of ma-
rine fish larvae to changes in salinity is higher for newly hatched 
larvae compared with first feeding larval stage. Following the 
onset of exogenous feeding, larval salinity tolerance increases 
with age as a result of the development of osmoregulation struc-
tures. However, the survival results from this study plus previous 
findings for S. rivoliana contradict these statements. Apparently, 
older S.  rivoliana larvae (>2 DPH) appear to be more tolerant 
to brackish water condition of 25  g/L compared with newly 
hatched larvae. On the other hand, no differences were found 
according to spawn origin (Table 3). Like other marine fish spe-
cies, embryonic development of longfin yellowtail follows the 
usual developmental stages. Time to hatch was not related to 
salinities, as most hatching occurred between 26 and 28 hr after 
stocking (Figure 1). In our study, after hatching, salinity was the 

TA B L E  1   Description of the four-spontaneous spawning of longfin yellowtail used for the trials

Trial
Spawning 
(#)

Source of 
eggs Date

Fertilization 
(%)

Eggs diameter 
(mm)

Oil globule 
diameter (mm)

Broodstock tank

Temperature oC Salinity g/L

1 S-152 BG1 7-Feb-18 93 1.124 ± 0.023 0.257 ± 0.013 25.4 35

1 S-158 BG1 7-Mar-18 87 1.101 ± 0.033 0.306 ± 0.026 25.6 30

2 S-161 BG1 2-Apr-18 97 1.090 ± 0.017 0.273 ± 0.018 25.1 35

2 S-8 BG3 7-Apr-18 100 1.167 ± 0.034 0.258 ± 0.024 25.1 35

Abbreviations: S, number of spawn; BG, Broodstock groups #1 and #3.

TA B L E  2   Mean per cent of hatched longfin yellowtail larvae and survival at 24 hr for all experimental salinities

Spawnings Parameter

Salinity (g/L)

15 20 25 30†  35†  40 50

S-152 Hatching rate (%) 1.0 ± 1.7b – 3.7 ± 5.5b – 80.7 ± 20.0a – 100.0 ± 0.0a

24-hr Survival rate (%) 0.0 ± 0.0 – 0.0 ± 0.0 – 43.5 ± 12.6a – 6.3 ± 2.6b

S-158 Hatching rate (%) – 7.4 ± 5.6b – 43.1 ± 32.5b – 90.6 ± 4.0a 96.6 ± 5.9a

24-hr Survival rate (%) – 0.0 ± 0.0 – 7.0 ± 2.0b – 49.6 ± 17.7a 4.1 ± 2.5b

Note: Values (mean ± SD) in the same row with different superscript letters are significantly different (Tukey's test, p < .05).
Abbreviation: S, number of spawn.
†Ambient sea water. 
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primary factor determining immediate larval survival. Thus, our 
results suggest that larvae of S. rivoliana can tolerate a range of 
salinities between 35 and 40 g/L, and it is believed that spawn-
ing occurs at salinities encountered offshore. Spawning sites of 
longfin yellowtail are not well documented. However, spawning 
most likely occur offshore at salinities similar to that of oceanic 
water (Faulk & Holt, 2006). Generally, eggs and larvae of marine 
teleost pelagic fishes hatching from eggs spend planktonic life in 

offshore areas (Hiroi et al., 1997). Limited information is avail-
able on salinity tolerances of other Seriola fish species during 
early development. According to Olivieri-Velázquez and Neal 
(2018), metabolic demand of larvae increases in hyperosmotic 
environment as they attempt to maintain homeostasis of body 
fluids and it is necessary to divert more energy into osmoreg-
ulation than to growth or development. Mortality of yolk-sac 
larvae after 24 hr in this study was most likely associated with 

TA B L E  3   Effect of water salinity on eggs and 24-hr larvae of longfin yellowtail, Seriola rivoliana

  Hatching rate (%) NL‡  (mm) YSV‡  (mm3) DWL‡  (mg)
24-hr Survival 
rate‡  (%)

Spawning

S-161 37.3 ± 23.9 2.631 ± 0.239 0.094 ± 0.012 0.124 ± 0.024a 37.4 ± 21.8

S-8 37.7 ± 25.3 2.749 ± 0.185 0.096 ± 0.014 0.084 ± 0.016b 28.6 ± 12.0

Salinity (g/L)

20 2.5 ± 5.0b – – – –

35†  48.0 ± 15.9a 2.768 ± 0.204 0.098 ± 0.010 0.109 ± 0.037 31.6 ± 12.8

40 58.4 ± 10.6a 2.612 ± 0.182 0.092 ± 0.014 0.098 ± 0.020 34.5 ± 13.5

50 41.2 ± 11.3a – – – –

Note: Values (mean ± SD) in the same column (up subdivision line) with different superscript letters are significantly different (Tukey's test, p < .05).
Abbreviations: DWL, dry weight of larvae; NL, Notochord length; S, number of spawn; YSV, yolk-sac volume.
†Ambient sea water. 
‡Mean values were made with 35 and 45 g/L treatments. 

F I G U R E  1   Embryonic development of longfin yellowtail at different water salinities. Embryonic stages are based on Geffen et al. (2006)
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energy cost for osmoregulation. Larvae are relatively undevel-
oped at hatching and do not possess the osmoregulatory abilities 
of juvenile fishes such as gills, gut, kidneys and urinary bladder 
(Faulk & Holt, 2006). In addition, newly hatched larvae in higher 
salinities had greater survival, but showed also a larger incidence 
of deformities. Larval deformities of fish cultured in unsuitable 
salinities have been reported in others studies (Smith, Denson, 
Heyward, Jenkins, & Carter, 1999).

As expected, eggs and newly hatched larvae of S. rivoliana were 
positively buoyant at salinities above 35 g/L (Table 4). Most of the 
larvae accumulated and became trapped at the water surface (direct 
observations).

Our findings provide valuable understanding regarding longfin 
yellowtail larvae production. However, it is necessary to evaluate 
the effect of salinity on physiological adaptability, growth and sur-
vival of late-stage larvae and juveniles, in order to maximize indus-
trial scale hatchery production of this species.
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