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A B S T R A C T
White spot syndrome virus (WSSV) is one of the most virulent pathogens of cultured penaeid shrimp. Several

control strategies are used commonly to mitigate the economic losses caused by the pathogen, such as application
of antiviral products at farm level. One of the most practical method for the screening of potential anti-WSSV
products is through challenge tests. Therefore, it is essential to develop simple, reproducible and effective
bioassays able to simulate specific mortality levels. The purpose of this study was to develop a simple and
reproducible bioassay that simulate different mortality levels by varying the proportion of WSSV-infected and
noninfected shrimp tissues administered to susceptible shrimp during a per os challenge test. This method
mimics one of the natural transmission routes of WSSV infection in shrimp and could be applied to identify
potential antiviral products to different cultured shrimp species susceptible to WSSV.
Here we report:

� A simple and economic method to evaluate therapeutic antiviral products against WSSV through a challenge
test, that uses different biomass amounts of WSSV-infected papilla.

� Allows to simulate a wide and reproducible range of mortalities observed in shrimp farms.

� A challenge test that simulates one mode of natural WSSV infection in shrimp.
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Method name: 
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Name and reference of
original method:
Q. Wang, B.L. White, R.M. Redman, D. V. Lightner, Per os challenge of Litopenaeus vannamei
postlarvae and Farfantepenaeus duorarum juveniles with six geographic isolates of white
spot syndrome virus, Aquaculture.170 (1999) 179–194. doi:10.1016/S0044-8486(98)00425-
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Resource availability: 
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Overview

White spot syndrome virus (WSSV) is one of the most virulent pathogens reported for cultured
penaeid species [1,2] still causing high mortalities and economical losses [3–5]. Challenge tests are
used to evaluate potential control methods for shrimp diseases [6–10], of which, the per os challenge
offering infected papilla to susceptible shrimp reproduces one of the pathways of shrimp WSSV
infection in farms. However, these challenge tests have proven to exert variable mortalities that could
be attributed to the non-uniformity of viral loads in the tissues offered during the tests [11,12]. Here,
we report a reproducible and precise bioassay for the evaluation of antiviral products against WSSV
through the standardization of the mortality responses to different amounts of WSSV-infected and
noninfected shrimp tissues.

Method details

Materials

Biological material: WSSV-infected and non-infected homogenized shrimp tissues
Scalpel
Cutting board
Plastic weighing dishes
Aluminum foil
Paper tape
Permanent marker
Notebook
Microsoft Excel to display and analyze data
Statistical software to calculate lethal doses (LD)

Reagents

Sodium hypochlorite (200 mg L�1)
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Equipment

Freezer (at �80 �C)
Digital scale, precision 0.01 g
Bioassay room with experimental units

Experimental shrimp and rearing conditions

Healthy juveniles of Penaeus vannamei shrimp (3–8 g) are transferred to the test room and
randomly allocated to aquariums at a density of 10 shrimp per 50-L aquariums. Each aquarium is filled
with filtered and UV sterilized seawater, and continuously aerated. Food, molts and fecal material is
daily siphoned out. Water exchange in tanks is set to 50% per day. Shrimp are fed daily with a
commercial diet at 5% of their estimated biomass during a quarantine period of seven days to verify
the absence of WSSV infection. Shrimp are starved for 24 h prior to the start of the challenge test.

Viral papilla

Before the initiation of the challenge test, WSSV-infected and noninfected shrimp tissues (muscle)
stored at �80 �C are thawed and minced with scalpels into small pieces (0.5–1.0 mm2). The viral
papilla is prepared combining different proportions of both tissues to obtain four different viral papilla
concentrations (Table 1). The amount of infected and non-infected tissue will total 10% of the shrimp
biomass obtained in each aquarium (Table 1).

WSSV challenge

Shrimp are per os infected supplying (only one dose) the four viral papillae (treatments) in each
aquarium (six replicates per treatment). For this, both tissues infected and non-infected at the
correspondent proportions are homogenized and distributed to the aquariums. Shrimp pertaining to a
double negative control group (six replicates) are fed with 10% shrimp biomass of WSSV-noninfected
shrimp muscle. Shrimp of treatments and double negative control group are not fed with the
commercial diets for the next 24 h and afterward, shrimp are fed with a commercial diet for nine days
at 5% of its daily biomass.

Mortality observation and confirmatory analysis

After 24 -hs post-exposure, mortality is recorded every 2 h during the peak of the mortality period,
which is expected to occur within 96 h post-exposure, and every 4 h during the last days of the
challenge test. Moribund shrimp are removed during the challenge to avoid re-infection. The
challenge ends after 10 days post-exposure. A suggested sample of 10% of moribund shrimp from the
infected treatments and survivors from the negative controls are collected for nested polymerase
chain reaction (PCR) and histopathologic analysis, to confirm the existence or absence of infections
and lesions in infected and noninfected treatments.
Table 1
Viral papillae prepared with WSSV-infected and noninfected shrimp tissues administered at
10% of the aquarium shrimp biomass.

Aquarium biomass proportion (%) of administered shrimp tissues

WSSV-infected WSSV-noninfected

1.5 8.5
2.5 7.5
5.0 5.0
10.0 0.0
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WSSV dose-response model

The WSSV dose–response relationship is described as the variability of shrimp cumulative
mortality after 10 days post-exposure as a function of the proportion (% of aquarium biomass) of
WSSV-infected shrimp muscle supplied during the challenge test (Fig. 1). Mortality data are modeled
with a probit regression and lethal doses (LD) of the proportion of WSSV-infected shrimp muscle
causing different mortality responses are obtained (Fig. 1).

Validation method

Six challenge tests were carried out for the validation of the proposed WSSV dose-response model,
with healthy shrimp weighing 3.0 � 1.4 g (Challenge tests 1, 2 and 3) and 8.0 � 1.2 g (Challenge tests 4,
5 and 6). Water temperature of tests ranged between 25 and 28 �C and concentration of dissolved
oxygen was maintained above 5.0 mg L�1. Salinity for all challenge tests was 35.0 � 0.0 g/L. Healthy
juveniles of P. vannamei shrimp were obtained from a local shrimp farm (Santa Elena, Ecuador) and
transferred to an experimental room at the Centro Nacional de Acuicultura e Investigaciones Marinas
(CENAIM, Santa Elena, Ecuador). Shrimp were randomly allocated (10 shrimp per aquarium) to 50 L
glass aquariums (experimental units). Each aquarium was filled with 40 L of filtered (1 mm) and UV
sterilized seawater, and continuously aerated. Protocols of water exchange, feeding, viral papilla
preparation, treatments, the double negative control group, and challenge tests were performed as
previously described (Method details). All experimental units were managed in the same way.

The healthy status of the experimental shrimp (20 in average for each challenge) was confirmed by
PCR and histopathologic analysis. PCR analysis were performed following the methodology described
by Pradeep et al. [13]. For the histopathologic analysis, shrimp were fixed with Davidson AFA solution
and tissues were processed according to the procedures outlined by Bell and Lightner [14]. The WSSV
infection of the viral papillae was also confirmed by nested PCR analysis. PCR-real time analysis was
used to quantify the WSSV load for the four viral papillae. For each challenge, 10% of the moribund
shrimp were processed for WSSV confirmatory analysis by nested PCR and histopathologic analysis.

Differences in cumulative mortality at 10 days post-exposure among treatments were analyzed by
one-way analysis of variance (ANOVA). The null hypothesis (no effect in proportions of WSSV-infected
Fig. 1. Pictorial representation for the process of WSSV challenge by offering different proportion of WSSV-infected papilla and
WSSV dose-response model.



C. Domínguez-Borbor et al. / MethodsX 6 (2019) 1617–1626 1621
shrimp muscle used in the challenge tests) was rejected with a P-value of the F-test � 0.05. Tukey’s
Honest Significant Difference test was used to compare treatment means. Previously, variance
homogeneity of all treatments was examined through the Bartlett test and assumption of normality
were examined through the Shapiro-Wilk normality test. Dose-response data (mortality-proportion
of WSSV-infected shrimp muscle) were modeled with probit regressions and lethal doses causing 30,
50 and 80% of mortality were estimated (LD30, LD50 and LD80) for shrimp of 3.0 and 8.0 g. Analysis of
probit regression were performed using IBM SPSS Statistics Version 20. All six challenge tests were
carried out following the procedure described above.

Significant differences among all proportions of WSSV-infected shrimp muscle were found in all six
challenge tests (Table 2). At each proportion of WSSV-infected shrimp muscle supplied in the
challenge tests, similar levels of mortalities within and between shrimp weight groups were found,
with a maximum mortality difference of 6.7%, indicating that specific proportions induce similar and
reproducible levels of mortality through time (Table 2). No mortality was observed in the double
negative control group in any of the six challenge tests.

Cumulative mortality significantly increased following a probit relationship with the proportion of
infected-noninfected shrimp tissues (P < 0.001) across shrimp weight groups (Fig. 2). Estimated lethal
doses were similar within and between shrimp weight ranges and their 95% confidence intervals (CI)
overlapped (Fig. 2). Fig. 2 remarks such similarity and CI overlapping for LD30, LD50 and LD80,
indicating absence of significant differences between shrimp weighing 3 and 8 g. Probability of
cumulative shrimp mortality (Fig. 2) was estimated according to Eq. (1).

Probability of cumulative mortality = P (z � probit [p(x)]) (1)

Where, z = standard normal z-score at which the left-tail probability equals p(x).
In all challenge tests, the PCR and histopathology analyses (Fig. 3) confirmed that moribund

shrimps in all infected treatments were severely affected with WSSV.
The combination of WSSV-infected and non-infected shrimp muscle provoked different mortality

levels, which increased with the viral load (Fig. 4A). The 1.5, 2.5, 5.0 and 10.0% of WSSV-infected
shrimp muscle (% of aquarium biomass) used in the viral papillae contained 3.14 � 106, 1.13 � 107,
1.80 � 107 and 6.29 � 108 viral copies per mg, respectively (Fig. 4B).

Once different combinations of WSSV-infected and noninfected shrimp tissues, and the
correspondent mortalities levels, are identified, antiviral WSSV products can be identified using a
Table 2
Cumulative mortality (average � standard deviation) of P. vannamei shrimp after 10 days of post-exposure in six challenge tests
used for the calibration of the WSSV dose-response model.

Proportion of WSSV-infected shrimp muscle
(% of aquarium biomass) used in the viral
papillae

Shrimp weight (3.0 � 1.4 g) Shrimp weight (8.0 � 1.2 g)

Number of challenge
test (mean shrimp
weight)

Cumulative
mortality
(%)

Number of challenge
test (mean shrimp
weight)

Cumulative
mortality (%)

1.5 1 (2.8 � 0.7 g) 16.7 � 5.2 a 4 (7.9 � 0.5 g) 21.7 � 7.5 a

2.5 48.3 � 7.5 b 43.3 � 5.2 b

5.0 60.0 � 6.3 c 66.7 � 8.2 c

10 86.7 � 8.2 d 83.3 � 5.5 d

1.5 2 (3.2 � 1.3 g) 21.7 � 7.5 a 5 (8.0 � 1.1 g) 23.3 � 8.2 a

2.5 46.7 � 8.2 b 43.3 � 6.3 b

5.0 63.3 � 5.2 c 63.3 � 5.2 c

10 81.7 � 9.8 d 86.7 � 8.2 d

1.5 3 (3.1 � 0.5 g) 20.0 � 6.3 a 6 (8.2 � 0.6 g) 18.3 � 7.5 a

2.5 43.3 � 5.2 b 46.7 � 5.2 b

5.0 65.0 � 5.5 c 65.0 � 8.4 c

10 85.0 � 10.5
d

85.5 � 8.5 d

Means with different letters within each challenge test indicate significant differences at P � 0.05 by ANOVA and Tukey’s Honest
Significant Difference test.



Fig. 2. Probit analysis of cumulative mortality after 10 days post-infection as a function of the proportion (% of aquarium
biomass) of WSSV-infected shrimp muscle (95% CI) supplied during the challenge tests for shrimp weights of 3.0 � 1.4 g (A) and
8.0 � 1.2 g (B). Estimated lethal doses 30, 50 and 80 (LD30, LD50 and LD80) for the proportion of WSSV-infected shrimp muscle to
obtain cumulative shrimp mortalities of 30, 50 and 80% after 10 days post-infection are also showed. p(x) = Probability
cumulative mortality.
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complete protocol that includes the use of the method described in this article (Fig. 5). Briefly, the
protocol consists of a process of three main steps. In the first step, healthy shrimp are collected from a
pond without reports of mortality events. The health status of the collected shrimp after a quarantine
period of 7 days is verified by PCR and histopathology analysis using a sample. In the second step,
healthy shrimp are used for the evaluation and selection of potential anti-WSSV products over the
production variables during an in vivo experiment. Previously, diets are formulated and prepared to
contain the products to be evaluated during the in vivo experiment. Shrimp are fed with the
formulated diets during a period of 30–60 days and production variables are determined at harvest.
Potential anti-WSSV products with the best performance during the in vivo experiment are selected
and used for the third step, where anti-WSSV products are identified through a challenge test. In this
step, the mortality level to be simulated in each aquarium population is choose and viral papilla is
prepared according to the method described in the article. Anti-WSSV products with higher
cumulative survival and/or higher median time of survival during the challenge test are selected and
can be used for further evaluation in ponds.

Additional information

Anti-WSSV products are usually evaluated through intramuscular injection, immersion, oral
inoculation and feeding of shrimp with infected tissues challenge tests [11,15,16]. Intramuscular
injection challenge tests are effective to obtain high and reproducible mortality levels [12,17].
However, this form of infection does not occur in nature, as viral particles are not confronted with



Fig. 3. Hematoxylin and eosin-stained histological sections of moribund P. vannamei shrimp collected at 46 h post-exposure in
the treatment where the viral papilla was prepared by the combination of 2.5% of WSSV-infected and 7.5% of noninfected
tissues, which viral load was 1.13 � 107 copies mg�1. Shrimp shows white spot disease (WSD) pathology caused by WSSV
infection and characterized by cells with intranuclear inclusion bodies (arrow) in (A) gills, (B) antennal gland, (C) stomach
epithelium and (D) hematopoietic tissue 40�. Scale bar = 5 mm.
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shrimp natural barriers [18]. Unlike, the per os challenge test simulates one of the main natural routes
of WSSV infection [19]. Intubation is an oral challenge test, where shrimp are individually oral
inoculated with known and similar virus amounts and therefore have the advantages of obtaining a
low mortality variability and the results of different studies can be compared [15]. In this study we
focused on the per os challenge test because it reproduces natural infections in a shrimp farm
(cannibalism). First per os WSSV challenge test of P. vannamei shrimp using one dose of infected
minced tissue was reported by Wang et al. [11]. Later, several other protocols of per os challenge tests
have been performed, most of them performed with only one dose. Here we report a WSSV per os
challenge test based on a dose-response model, which was standardized through the mortality
responses to different amounts of WSSV-infected tissues. This method can simulate a wide and
reproducible range of mortalities and is a simple and economic method to evaluate therapeutic
antiviral products against WSSV by varying the proportion of WSSV-infected and noninfected tissues
administered to susceptible shrimp.

The per os challenge test via feeding has been criticized because shrimp within treatments do not
ingest equal amounts of infected tissue, thus leading to an increased variation of the response variable
(mortality) and pathogens are less infectious than intramuscular inoculation procedures [12].
However, we demonstrated that a wide range of shrimp mortalities with low variability at each
proportion of WSSV-infected tissue can be obtained (with an approximately standard deviation of
2.5% among challenge tests). During feasting, viral particles could be lixiviated into the water
permitting other routes of infection. In this form, some organs, including antennal gland of shrimp
could be infected, since according to immunohistochemistry analysis, this is one of the first shrimp



Fig. 4. (A) Cumulative mortality of P. vannamei shrimp after 10 days post-infection in six challenge tests versus copy number of
WSSV quantified by PCR-real time and (B) Copy number of WSSV versus the proportions of WSSV-infected muscle tissues, for the
four viral papillae used in this study.

Fig. 5. Scheme of a complete protocol to identify anti-WSSV products that includes the use of the challenge test method
described in this article.
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organs to be infected [20]. In fact, a new WSSV infection method of shrimp has been developed by
inoculating the pathogen via the antennal gland [21]. In either transmission case, we can simulate a
wide and reproducible mortality range with the method described in this article.

On the other hand, water temperature affects WSSV infection, WSD progress and therefore shrimp
mortality [22,23]. In our study, water temperature fluctuated over a wide range from 25 �C to 28 �C,
and although securely this was other source of the error observed in the mortality response, similar
levels of mortalities within and between challenge tests were observed, reflecting that we reproduced
similar mortalities levels through time. However, it is recommendable that the calibration process will
be performed avoiding great temperature variation to minimize the error sources. Another advantage
of the method described here is its simplicity, as it does not require virus purification, tampon
solutions, trained personnel to manipulate individual shrimp, PCR-real time thermocycler and other
specialized equipment. A 20 �C freezer will be enough to maintain infected material viable.

Fig. 4A shows an R2 equal to 0.86, which indicates that 86% of the mortality variability is explained
by the number of WSSV copies. With the information that we have is difficult to explain the sources of
the rest of variability, which could include differences between experiments of water temperature,
shrimp size, shrimp genetic, viral load, among others. It is important to consider, that we did not
measure the viral load in each experiment, because we focus on the relation between mortality and
the combination of infected and noninfected tissues, rather than in the quantification of the viral load.
However, the treatment containing 10% of the WSSV infected tissue can be considered as a control, as
in this treatment the papilla was not combined with noninfected tissues. The mortality of this
treatment presented low variability in all six challenge tests (in average 85%, range = 83.3%–86.7%).
Therefore, we deduce that all used batch presented similar viral loads and probably other sources that
we did no measure could explain the rest of the variability.

Shrimp producers can easily evaluate antiviral products against WSSV on their own by simulating
similar infecting conditions usually occurring in the pond using the methodology described in this
article. Nevertheless, the proportions of WSSV-infected shrimp muscle can vary depending of the
virulence of the WSSV strain. Hence, a similar calibration process reported in this study could be
performed before the method implementation.
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